29 research outputs found

    Glucose-Raising Genetic Variants in MADD and ADCY5 Impair Conversion of Proinsulin to Insulin

    Get PDF
    Recent meta-analyses of genome-wide association studies revealed new genetic loci associated with fasting glycemia. For several of these loci, the mechanism of action in glucose homeostasis is unclear. The objective of the study was to establish metabolic phenotypes for these genetic variants to deliver clues to their pathomechanism.) and insulin resistance (HOMA-IR, Matsuda-Index) were assessed.. on proinsulin-to-insulin conversion. These effects may also be related to neighboring regions of the genome

    Impairment of GLP1-induced insulin secretion: Role of genetic background, insulin resistance and hyperglycaemia.

    No full text
    One major risk factor of type 2 diabetes is the impairment of glucose-induced insulin secretion which is mediated by the individual genetic background and environmental factors. In addition to impairment of glucose-induced insulin secretion, impaired glucagon-like peptide (GLP)1-induced insulin secretion has been identified to be present in subjects with diabetes and impaired glucose tolerance, but little is known about its fundamental mechanisms. The state of GLP1 resistance is probably an important mechanism explaining the reduced incretin effect observed in type 2 diabetes. In this review, we address methods that can be used for the measurement of insulin secretion in response to GLP1 in humans, and studies showing that specific diabetes risk genes are associated with resistance of the secretory function of the beta-cell in response to GLP1 administration. Furthermore, we discuss other factors that are associated with impaired GLP1-induced insulin secretion, for example, insulin resistance. Finally, we provide evidence that hyperglycaemia per se, the genetic background and their interaction result in the development of GLP1 resistance of the beta-cell. We speculate that the response or the non-response to therapy with GLP1 analogues and/or dipeptidyl peptidase-4 (DPP-IV) inhibitors is critically dependent on GLP1 resistance

    Nor-1, a novel incretin-responsive regulator of insulin genes and insulin secretion.

    No full text
    B-cell failure at the onset of type 2 diabetes is caused by a decline in β-cell function in the postprandial state and loss of pancreatic β-cell mass. Recently, we showed an association between increased insulin secretion and a single nucleotide polymorphism (SNP), SNP rs12686676, in the NR4A3 gene locus encoding the nuclear receptor Nor-1. Nor-1 is expressed in β-cells, however, not much is known about its function with regard to insulin gene expression and insulin secretion. Nor-1 is induced in a glucose-/incretin-dependent manner via the PKA pathway and directly induces insulin gene expression. Additionally, it stimulates insulin secretion possibly via regulation of potentially important genes in insulin exocytosis. Moreover, we show that the minor allele of NR4A3 SNP rs12686676 fully rescues incretin resistance provoked by a well-described polymorphism in TCF7L2. Thus, Nor-1 represents a promising new target for pharmacological intervention to fight diabetes

    Low-valent silicon

    No full text
    corecore