441 research outputs found

    What Your Compliance Office Is - And Is Not

    Get PDF

    In Situ Trace Element Measurements on Roda and the Origin of Diogenites

    Get PDF
    The origin of diogenites remains poorly understood. A recent model interprets many diogenites to have been formed from melts that were derived by remelting initial magma ocean cumulates, and these penultimate parent melts were then contaminated by melts derived from remelting of the basaltic (eucritic) crust to form the ultimate diogenite parent melts [1] (hereafter the remelting model). This is a very complicated petrogenesis that has profound implications for the geological evolution of 4 Vesta if correct. This model was developed based on trace element analyses of bulk rock samples that had been leached in acids to remove phosphates; the compositions of the residues were interpreted to be close to those of cumulus orthopyroxenes plagioclase, chromite and olivine [1]. In situ measurements of phases in diogenites can be used to test this model. We have begun a campaign of laser ablation ICP-MS of orthopyroxene grains in diogenites for this purpose. Here we report our first results on one diogenite, Roda. We have determined a suite of trace lithophile elements on nine, mm-sized pyroxene grains separated from Roda that have previously been studied [2, 3]. A key observation supporting the remelting model is the very low Eu/Eu* of leached residues; values too low to represent orthopyroxene that crystallized from melts with chondritic Sm/Eu and Gd/Eu [1]. (Eu* = Eu interpolated from REE diagrams.) Crustal remelts have low Sm/Eu and Gd/Eu, and orthopyroxenes that crystallized from parent melts contaminated by them would have very low Eu/Eu* [1]. Roda grains have Eu/Eu* of 0.243 to 0.026; the latter a value lower than any measured on bulk diogenite leached residues (0.041) [1]. There is a general negative correlation between Eu/Eu* and some incompatible elements (Zr, Nb, Hf), but not others (LREE). This appears inconsistent with the remelting model as it would suggest an evolving parent melt with La de-creasing as Zr increased and Eu/Eu* decreased. Grain R-15 includes trace-element-rich trapped melt phases [2, 3]. This grain has the highest Eu/Eu* and LREE contents, indicating that the trapped melt had a high Eu/Eu*. Thus, our first data on one diogenite do not provide support for the remelting model [1]. Roda is unusual in that its orthopyroxene grains show wide ranges in trace element contents [4]. Previous in situ REE analyses of grain R-15 did not reveal evidence for subsolidus equilibration with trace-element-rich trapped melt phases, and led to the suggestion that Roda may be polymict, with different grains representing different lithologies of diverse compositions [3]. Thus, based on our results on Roda, it is perhaps premature to abandon the remelting model. In situ measurements on a suite of diogenites is planned to further address this issue

    Metal-Silicate Segregation in Asteroidal Meteorites

    Get PDF
    A fundamental process of planetary differentiation is the segregation of metal-sulfide and silicate phases, leading eventually to the formation of a metallic core. Asteroidal meteorites provide a glimpse of this process frozen in time from the early solar system. While chondrites represent starting materials, iron meteorites provide an end product where metal has been completely concentrated in a region of the parent asteroid. A complimentary end product is seen in metal-poor achondrites that have undergone significant igneous processing, such as angrites, HED's and the majority of aubrites. Metal-rich achondrites such as acapulcoite/lodranites, winonaites, ureilites, and metal-rich aubrites may represent intermediate stages in the metal segregation process. Among these, acapulcoite-lodranites and ureilites are examples of primary metal-bearing mantle restites, and therefore provide an opportunity to observe the metal segregation process that was captured in progress. In this study we use bulk trace element compositions of acapulcoites-lodranites and ureilites for this purpose

    Thermal Constraints from Siderophile Trace Elements in Acapulcoite-Lodranite Metals

    Get PDF
    A fundamental process in the formation of differentiated bodies is the segregation of metal-sulfide and silicate phases, leading to the formation of a metallic core. The only known direct record of this process is preserved in some primitive achondrites, such as the acapulcoite-lodranites. Meteorites of this clan are the products of thermal metamorphism of a chondritic parent. Most acapulcoites have experienced significant partial melting of the metal-sulfide system but not of silicates, while lodranites have experienced partial melting and melt extraction of both. The clan has experienced a continuum of temperatures relevant to the onset of metal mobility in asteroidal bodies and thus could yield insight into the earliest stages of core formation. Acapulcoite GRA 98028 contains relict chondrules, high modal sulfide/metal, has the lowest 2-pyroxene closure temperature, and represents the least metamorphosed state of the parent body among the samples examined. Comparison of the metal-sulfide component of other clan members to GRA 98028 can give an idea of the effects of metamorphism

    The Regolith of 4 Vesta - Inferences from Howardites

    Get PDF
    Asteroid 4 Vesta is quite likely the parent asteroid of the howardite, eucrite and diogenite meteorites - the HED clan. Eucrites and diogenites are the products of igneous processes; the former are basaltic composition rocks from flows, and shallow and deep intrusive bodies, whilst the latter are cumulate orthopyroxenites thought to have formed deep in the crust. Impact processes have excavated these materials and mixed them into a suite of polymict breccias. Howardites are polymict breccias composed mostly of clasts and mineral fragments of eucritic and diogenitic parentage, with neither end-member comprising more than 90% of the rock. Early work interpreted howardites as representing the lithified regolith of their parent asteroid. Recently, howardites have been divided into two subtypes; fragmental howardites, being a type of non-regolithic polymict breccia, and regolithic howardites, being lithified remnants of the active regolith of 4 Vesta. We are in the thralls of a collaborative investigation of the record of impact mixing contained within howardites, which includes studies of their mineralogy, petrology, bulk rock compositions, and bulk rock and clast noble gas contents. One goal of our investigation is to test the hypothesis that some howardites represent breccias formed from an ancient, well-mixed regolith on Vesta. Another is to use our results to further understand regolith processing on differentiated asteroids as compared to what has been learned from the Moon. We have made petrographic observations and electron microprobe analyses on 21 howardites and 3 polymict eucrites. We have done bulk rock analyses using X-ray fluorescence spectrometry and are completing inductively coupled plasma mass spectrometry analyses. Here, we discuss our petrologic and bulk compositional results in the context of regolith formation. Companion presentations describe the noble gas results and compositional studies of low-Ca pyroxene clasts

    A Cabonaceous Chondrite Dominated Lithology from the HED Parent; PRA 04401

    Get PDF
    The paired howardite breccias Mt. Pratt (PRA) 04401 and PRA 04402 are notable for their high proportion of carbonaceous chondrite clasts [1]. They consist predominantly of coarse (0.1-7 mm) diogenite (orthopyroxene), eucrite (plagioclase + pyroxene), and carbonaceous chondrite clasts set in a finer grained matrix of these same materials. Coarse C-chondrite clasts up to 7 mm are composed mainly of fine-grained phyllosilicates with lesser sulfides and high-mg# anhydrous magnesian silicates. Most of these clasts appear to be texturally consistent with CM2 classification [1] and some contain relict chondrules. The clasts are angular and reaction or alteration textures are not apparent in the surrounding matrix. PRA 04401 contains about 70 modal% C-chondrite clasts while PRA 04402 contains about 7%. Although many howardites are known to contain abundant C-chondrite clasts [2,3,4], PRA 04401 is, to our knowledge, the most chondrite-rich howardite lithology identified to date. Low EPMA totals from CM2-type clasts in other howardites suggest that they frequently contain 10 wt% or more water [2], a figure consistent with their mineralogy. PRA 04401, therefore, demonstrates the potential for hydrous lithologies with greater than 5 wt% water to occur locally within the nominally anhydrous HED parent body. Since the origin of this water is xenogenic, it might therefore be concentrated in portions of the asteroid surface where it would be more readily observable by remote sensing techniques. We plan to further examine C-chondrite clasts in PRA 04401/2 with the intent of establishing firm chemical classification, estimating water content, and evaluating their relationship with the host breccia. To help place them in context of the HED parent, we will also compare these breccias with other howardites to evaluate which lithologies are likely to be more prevalent on the asteroid surface

    Removal and Replacement of Primary Metal in Ferroan Lodranite MAC 88177

    Get PDF
    Collectively, acapulcoites and lodranites form a clan of primitive achondrites generally thought to have originated from the same parent body on the basis of similarities in petrology, mineral compositions, bulk compositions, cosmic ray exposure ages and oxygen isotope compositions, although considerable variation in some of these parameters has shown that the parent body was not entirely uniform. The presence of relict chondrules in several acapulcoites indicates that all were likely derived from chondrite-like precursor materials. The transition from acapulcoite to lodranite is gradual and corresponds to increasing metamorphic grade. Lodranites are generally coarser grained, but petrographic distinction between the two groups can also be made by modal abundances of troilite and plagioclase. Depletion of both these phases and incompatible lithophile trace elements in lodranites is consistent with their restitic origin formed by greater than 10% extraction of basaltic melt. Magnesian lodranites (e.g. Gibson, GRA 95209, Y-75274, Y-8002), some of which might also be considered transitional acapulcoites, have mineral and chemical compositions consistent with derivation by thermal metamorphism and partial melt extraction from acapulcoites, as would seem logical if samples represented different grades of metamorphism along a linear evolution trend. Ferromagnesian silicates in these lodranites tend to be displaced toward lower fe# (opx fe# 4-6) than the distribution observed in acapulcoites (opx fe# 6-11). A subset of lodranites, termed ferroan lodranites (e.g. FRO 90011, LEW 88280, Lodran, MAC 88177, Y-74357, Y- 791491/Y-791493), have ferromagnesian silicate minerals that are too Fe-rich (fe#>10) to have formed as simple restites from any known acapulcoite. Like silicates, metal-sulfide systematics of the ferroan lodranites are also inconsistent with a simple restitic origin. Logically, restitic lodranites should have been depleted in FeS during extraction of partial melts, since melting of the metal-sulfide system initiates at lower temperatures than melting of silicates. Yet, puzzingly, ferroan lodranites contain significant quantities (1.9-5.3 modal%) of troilite, indicating either (1) metal sulfide partial melts were retained during basaltic melt extraction or (2) later infusion of metal sulfide melts has occurred. In this study, we use trace siderophile elements in metals to assess the relative importance of each in creating the observed troilite enrichment

    History of Metal Veins in Acapulcoite-Lodranite Clan Meteorite GRA 95209

    Get PDF
    Graves Nunataks (GRA) 95209 has been hailed as the missing link of core formation processes in the acapulcoitelodranite parent asteroid because of the presence of a complex cm-scale metal vein network. Because the apparent liquid temperature of the metal vein (approximately 1500 C) is higher than inferred for the metamorphic grade of the meteorite, questions regarding the vein s original composition, temperature, and mechanism of emplacement have arisen. We have determined trace siderophile element compositions of metals in veins and surrounding matrix in an effort to clarify matters. We analyzed metals in GRA 95209 in a portion of thick metal vein and adjacent metal-rich (30-40 modal%), sulfide poor (less than 1%) matrix by EPMA and LA-ICP-MS for major and trace siderophile elements using methods described by [3]. We also examined metals from a metal-poor (approximately 15 modal%) and relatively sulfide-rich (2-5 modal%) region of the sample. Kamacite is the dominant metal phase in all portions of the sample. In comparison to matrix metal, vein metal contains more schreibersite and less tetrataenite, and is less commonly associated with Fe,Mn,Mg-bearing phosphates and graphite. Vein kamacite contains higher Co, P, and Cr and lower Cu and Ge. These minor variations aside, all metal types in GRA 95209 are fairly homogeneous in terms of their levels of enrichment of compatible siderophile elements (e.g. Pt, Ir, Os) relative to incompatible siderophile elements (e.g. As, Pd, Au), consistent with the loss of metal-sulfide partial melt that characterizes much of the clan. Whatever compositional differences between matrix and vein metal that may have originally existed, they have since largely co-equilibrated to similar restitic trace element compositions. We agree with [2] that metal veins, in their present state, do not represent a liquid composition. The original vein liquid was much more S-rich and emplaced at correspondingly lower liquid temperatures. Much of the Fe,Ni component solidified in cm scale conduits while S-rich melts were expelled and continued to migrate by percolation. The higher troilite content in metal poor regions of the sample results mostly from trapping of a small portion of these melts. The troilite is not remnant primary sulfide. Strong depletions of W, Mo, and especially Ga (greater than 50%, greater than 60%, and greater than 90% depletion, respectively) in metals of the metalpoor GRA 95209 lithology are localized at scales of 10-100 micrometers in the vicinity of graphite spherules. These depletions must have occurred below the temperatures at which cm-scale equilibration occurred, and future work will seek to determine their cause

    Fluid-Mediated Alteration on 4 Vesta - Evidence from Orthopyroxene Clasts in Howardites

    Get PDF
    The howardite, eucrite and diogenite (HED) meteorites represent the products of igneous processes and impact mixing on a differentiated asteroid. Eucrites are basaltic composition rocks that were formed as flows and as shallow and deep intrusive bodies. Some eucrites are cumulate gabbros. Diogenites are cumulate orthopyroxenites widely considered to be of deep crustal origin. Impact processes have excavated material from deep levels of the crust, and mixed it with surface rocks into a suite of polymict breccias. Howardites are one such rock type, being composed mostly of mixtures of clasts and mineral fragments of eucritic and diogenitic parentage [see 1]. The consensus view is that 4 Vesta is the parent asteroid of HED meteorites [2]. As part of a larger study of the record of impact mixing contained within howardites, we undertook an investigation of the compositions of orthopyroxene clasts in a suite of howardites [3]. We discovered a subset of orthopyroxene clasts in some howardites with unusual textural and compositional characteristics that are reminiscent of those previously observed in phenocrysts in a pyroxene-phyric melt clast in howardite EET 92014 [4]. The textural and compositional characteristics of the phenocrysts in this clast were interpreted as originating via interaction with an FeO-rich fluid phase

    Investigation of Orthopyroxene Diversity in Howardite Meteorites

    Get PDF
    The howardite, eucrite and diogenite (HED) family of meteorites is considered to originate from the asteroid 4-Vesta [1]. Howardites are polymict breccias made mostly of diogenitic and eucritic debris [2], and have recently been divided into two types: regolithic and fragmental [3]. Regolithic howardites have higher noble gas contents due to solar wind exposure, have a greater abundance of impact-produced glass, are richer in siderophile elements, e.g. Ni, and may preferentially have a mixing ratio of eucrite to diogenite of approx.2:1 [3]. The hypothesis is that these characteristics are a result of originating from an ancient, well-mixed regolith [3]. Fragmental howardites, by contract, show less evidence of regolithic processing and are suggested to have originated in more recently formed impact ejecta [3]. Our work aims to evaluate this hypothesis. We have examined the compositional variations of orthopyroxene (diogenite) clasts within eight howardites. We posited that because regolithic howardites sampled a wider range of the asteroid surface, they would contain orthopyroxene fragments with wider ranges in incompatible element contents than would fragmental howardites that sampled fewer diogenitic source rocks. One purpose of developing an additional method to differentiate regolithic and fragmental howardites is to aid in interpretation of data expected from the Dawn mission to 4-Vesta. The Dawn analyses will be of the regolith layers, making an understanding of regolithic meteorites and the processes by which they were formed an important constraint on understanding Dawn data
    corecore