1,532 research outputs found
Fine structure of excitons in CuO
Three experimental observations on 1s-excitons in CuO are not consistent
with the picture of the exciton as a simple hydrogenic bound state: the
energies of the 1s-excitons deviate from the Rydberg formula, the total exciton
mass exceeds the sum of the electron and hole effective masses, and the
triplet-state excitons lie above the singlet. Incorporating the band structure
of the material, we calculate the corrections to this simple picture arising
from the fact that the exciton Bohr radius is comparable to the lattice
constant. By means of a self-consistent variational calculation of the total
exciton mass as well as the ground-state energy of the singlet and the
triplet-state excitons, we find excellent agreement with experiment.Comment: Revised abstract; 10 pages, revtex, 3 figures available from G.
Kavoulakis, Physics Department, University of Illinois, Urban
Theory of optical spectra of polar quantum wells: Temperature effects
Theoretical and numerical calculations of the optical absorption spectra of
excitons interacting with longitudinal-optical phonons in quasi-2D polar
semiconductors are presented. In II-VI semiconductor quantum wells, exciton
binding energy can be tuned on- and off-resonance with the longitudinal-optical
phonon energy by varying the quantum well width. A comprehensive picture of
this tunning effect on the temperature-dependent exciton absorption spectrum is
derived, using the exciton Green's function formalism at finite temperature.
The effective exciton-phonon interaction is included in the Bethe-Salpeter
equation. Numerical results are illustrated for ZnSe-based quantum wells. At
low temperatures, both a single exciton peak as well as a continuum resonance
state are found in the optical absorption spectra. By contrast, at high enough
temperatures, a splitting of the exciton line due to the real phonon absorption
processes is predicted. Possible previous experimental observations of this
splitting are discussed.Comment: 10 pages, 9 figures, to appear in Phys. Rev. B. Permanent address:
[email protected]
Robust skill of decadal climate predictions
There is a growing need for skilful predictions of climate up to a decade ahead. Decadal climate predictions show high skill for surface temperature, but confidence in forecasts of precipitation and atmospheric circulation is much lower. Recent advances in seasonal and annual prediction show that the signal-to-noise ratio can be too small in climate models, requiring a very large ensemble to extract the predictable signal. Here, we reassess decadal prediction skill using a much larger ensemble than previously available, and reveal significant skill for precipitation over land and atmospheric circulation, in addition to surface temperature. We further propose a more powerful approach than used previously to evaluate the benefit of initialisation with observations, improving our understanding of the sources of skill. Our results show that decadal climate is more predictable than previously thought and will aid society to prepare for, and adapt to, ongoing climate variability and change.D.M.S., A.A.S., N.J.D., L.H. and R.E. were supported by the Met Office Hadley Centre
Climate Programme funded by BEIS and Defra and by the European Commission
Horizon 2020 EUCP project (GA 776613). L.P.C. was supported by the Spanish
MINECO HIATUS (CGL2015-70353-R) project. F.J.D.R. was supported by the H2020
EUCP (GA 776613) and the Spanish MINECO CLINSA (CGL2017-85791-R) projects. W.A.
M. and H.P. were supported by the German Ministry of Education and Research
(BMBF) under the project MiKlip (grant 01LP1519A). The NCAR contribution was
supported by the US National Oceanic and Atmospheric Administration (NOAA)
Climate Program Office under Climate Variability and Predictability Program Grant
NA13OAR4310138 and by the US National Science Foundation (NSF) Collaborative
Research EaSM2 Grant OCE-1243015. The NCAR contribution is also based upon work
supported by NCAR, which is a major facility sponsored by the US NSF under
Cooperative Agreement No. 1852977. The Community Earth System Model Decadal
Prediction Large Ensemble (CESM-DPLE) was generated using computational
resources provided by the US National Energy Research Scientific Computing Center,
which is supported by the Office of Science of the US Department of Energy under
Contract DE-AC02-05CH11231, as well as by an Accelerated Scientific Discovery grant
for Cheyenne (https://doi.org/10.5065/D6RX99HX) that was awarded by NCAR’s
Computational and Information System Laboratory.Peer ReviewedPostprint (published version
Going Beyond Sarbanes-Oxley Compliance: Five Keys to Creating Value
Discusses the factors involved in implementing Sarbanes-Oxley Act of 2002 for U.S. accounting firms. Appreciation of the goal behind the law; Comprehension of the accounting fraud; Aggressiveness in addressing ethical attitudes and rationalization
How Sales Executives Can Avoid Accounting Fraud Allegations
Is accounting fraud only a concern for CEOs and financial executives? This article discusses recent cases in which the Securities and Exchange Commission (SEC) charged Sales Vice Presidents for their role in accounting fraud. The authors offer suggestions to help sales executives steer clear of accounting fraud allegations
Angle resolved photoemission spectroscopy of Sr_2CuO_2Cl_2 - a revisit
We have investigated the lowest binding-energy electronic structure of the
model cuprate Sr_2CuO_2Cl_2 using angle resolved photoemission spectroscopy
(ARPES). Our data from about 80 cleavages of Sr_2CuO_2Cl_2 single crystals give
a comprehensive, self-consistent picture of the nature of the first
electron-removal state in this model undoped CuO_2-plane cuprate. Firstly, we
show a strong dependence on the polarization of the excitation light which is
understandable in the context of the matrix element governing the photoemission
process, which gives a state with the symmetry of a Zhang-Rice singlet.
Secondly, the strong, oscillatory dependence of the intensity of the Zhang-Rice
singlet on the exciting photon-energy is shown to be consistent with
interference effects connected with the periodicity of the crystal structure in
the crystallographic c-direction. Thirdly, we measured the dispersion of the
first electron-removal states along G->(pi,pi) and G->(pi,0), the latter being
controversial in the literature, and have shown that the data are best fitted
using an extended t-J-model, and extract the relevant model parameters. An
analysis of the spectral weight of the first ionization states for different
excitation energies within the approach used by Leung et al. (Phys. Rev. B56,
6320 (1997)) results in a strongly photon-energy dependent ratio between the
coherent and incoherent spectral weight. The possible reasons for this
observation and its physical implications are discussed.Comment: 10 pages, 8 figure
The Impact of Enterprise Risk Management on the Internal Audit Function
This exploratory study provides evidence about factors associated with the overall impact of enterprise risk management (ERM) on the internal audit function’s activities. Based on responses from 122 organizations in several countries, we find that ERM has the greatest impact on internal audit’s activities when (a) the organization’s ERM process is more completely in place, (b) the CFO and audit committee have called for greater internal audit activity related to ERM, (c) the chief audit executive’s (CAE) tenure is longer, (d) the organization is in the banking industry or is an educational institution, and (e) the internal audit function has provided more ERM leadership. We offer implications and future research directions
and Oxygen Stoichiometry: Structure, Resistivity, Fermi Surface Topology and Normal State Properties
(2212) single crystal samples
were studied using transmission electron microscopy (TEM), plane
() and axis () resistivity, and high resolution
angle-resolved ultraviolet photoemission spectroscopy (ARUPS). TEM reveals that
the modulation in the axis for doped 2212 is dominantly
of type that is not sensitive to the oxygen content of the system, and the
system clearly shows a structure of orthorhombic symmetry. Oxygen annealed
samples exhibit a much lower axis resistivity and a resistivity minimum at
K. He-annealed samples exhibit a much higher axis resistivity and
behavior below 300K. The Fermi surface (FS) of oxygen annealed
2212 mapped out by ARUPS has a pocket in the FS around the
point and exhibits orthorhombic symmetry. There are flat, parallel sections of
the FS, about 60\% of the maximum possible along , and about 30\%
along . The wavevectors connecting the flat sections are about
along , and about along , rather than . The symmetry of the near-Fermi-energy dispersing
states in the normal state changes between oxygen-annealed and He-annealed
samples.Comment: APS_REVTEX 3.0, 49 pages, including 11 figures, available upon
request. Submitted to Phys. Rev. B
On the determination of the Fermi surface in high-Tc superconductors by angle-resolved photoemission spectroscopy
We study the normal state electronic excitations probed by angle resolved
photoemission spectroscopy (ARPES) in Bi2201 and Bi2212. Our main goal is to
establish explicit criteria for determining the Fermi surface from ARPES data
on strongly interacting systems where sharply defined quasiparticles do not
exist and the dispersion is very weak in parts of the Brillouin zone.
Additional complications arise from strong matrix element variations within the
zone. We present detailed results as a function of incident photon energy, and
show simple experimental tests to distinguish between an intensity drop due to
matrix element effects and spectral weight loss due to a Fermi crossing. We
reiterate the use of polarization selection rules in disentangling the effect
of umklapps due to the BiO superlattice in Bi2212. We conclude that, despite
all the complications, the Fermi surface can be determined unambiguously: it is
a single large hole barrel centered about (pi,pi) in both materials.Comment: Expanded discussion of symmetrization method in Section 5, figures
remain the sam
- …
