392 research outputs found

    Effects of Variable Oceanographic Conditions on Forage Fish Lipid Content and Fatty Acid Composition in the Northern California Current

    Get PDF
    Lipids and fatty acids (FA) were investigated in 4 species of forage fish: northern anchovy Engraulis mordax, Pacific sardine Sardinops sagax, Pacific herring Clupea pallasi, and whitebait smelt Allosmerus elongatus, for their ability to serve as biological indicators of ocean conditions in the California Current large marine ecosystem (CCLME). Samples were collected during the oceanographically contrasting years of 2005 and 2006. Upwelling was severely curtailed in the spring and early summer of 2005, leading to delayed biological productivity, whereas upwelling was relatively normal in spring 2006. Principal components analysis described 78% of the variance within the lipid and FA dataset using the first 2 principal components. We found significant intra- and interspecific, interannual, and seasonal differences in lipid and FA profiles using univariate and permutation- based multivariate analysis of variance. Indicator species analysis showed distinct lipid and FA properties associated with each fish species. Using the ratio of docosahexaenoic acid (C22:6n-3) to eicosapentaeonic acid (C20:5n-3), we detected a transition from a diet composed primarily of dinoflagellate origin in early 2005 to a diet resulting from diatom-based productivity by late summer 2006. This shift was due to interannual differences in primary production, which was confirmed through phytoplankton sampling. Our study demonstrates that lipid and FA biomarkers in the forage fish community can provide information on ocean conditions and productivity that affect food web structure in the CCLME

    Diffusive equilibrium in thin-films (DET) provides evidence of suppression of hyporheic exchange and large-scale nitrate transformation in a groundwater-fed river

    Get PDF
    The hyporheic zone of riverbed sediments has the potential to attenuate nitrate from upwelling, polluted groundwater. However, the coarse-scale (5 – 10 cm) measurement of nitrogen biogeochemistry in the hyporheic zone can often mask fine-scale (<1 cm) biogeochemical patterns, especially in near-surface sediments, leading to incomplete or inaccurate representation of the capacity of the hyporheic zone to transform upwelling NO3-. In this study, we utilised diffusive equilibrium in thin-films (DET) samplers to capture high resolution (cm-scale) vertical concentration profiles of NO3-, SO42-, Fe and Mn in the upper 15 cm of armoured and permeable riverbed sediments. The goal was to test whether nitrate attenuation was occurring in a sub-reach characterised by strong vertical (upwelling) water fluxes. The vertical concentration profiles obtained from DET samplers indicate considerable cm-scale variability in NO3- (4.4 ± 2.9 mg N/L), SO42- (9.9 ± 3.1 mg/L) and dissolved Fe (1.6 ± 2.1 mg/L) and Mn (0.2 ± 0.2 mg/L). However, the overall trend suggests the absence of substantial net chemical transformations and surface-subsurface water mixing in the shallow sediments of our sub-reach under baseflow conditions. The significance of this is that upwelling NO3--rich groundwater does not appear to be attenuated in the riverbed sediments at <15 cm depth as might occur where hyporheic exchange flows deliver organic matter to the sediments for metabolic processes. It would appear that the chemical patterns observed in the shallow sediments of our sub-reach are not controlled exclusively by redox processes and / or hyporheic exchange flows. Deeper-seated groundwater fluxes and hydro-stratigraphy may be additional important drivers of chemical patterns in the shallow sediments of our study sub-reach. This article is protected by copyright. All rights reserved
    • …
    corecore