67 research outputs found

    Magnetotransport properties of a polarization-doped three-dimensional electron slab

    Full text link
    We present evidence of strong Shubnikov-de-Haas magnetoresistance oscillations in a polarization-doped degenerate three-dimensional electron slab in an Alx_{x}Ga1−x_{1-x}N semiconductor system. The degenerate free carriers are generated by a novel technique by grading a polar alloy semiconductor with spatially changing polarization. Analysis of the magnetotransport data enables us to extract an effective mass of m⋆=0.19m0m^{\star}=0.19 m_{0} and a quantum scattering time of τq=0.3ps\tau_{q}= 0.3 ps. Analysis of scattering processes helps us extract an alloy scattering parameter for the Alx_{x}Ga1−x_{1-x}N material system to be V0=1.8eVV_{0}=1.8eV

    Influence of epitaxial structure in the noise figure of AlGaN/GaN HEMTs

    Full text link

    Polarization effects in AlGaN/GaN and GaN/AlGaN/GaN heterostructures

    Full text link
    The influence of AlGaN and GaN cap layer thickness on Hall sheet carrier density and mobility was investigated for Al0.32Ga0.68N/GaN and GaN/Al0.32Ga0.68N/GaN heterostructures deposited on sapphire substrates. The sheet carrier density was found to increase and saturate with the AlGaN layer thickness, while for the GaN-capped structures it decreased and saturated with the GaN cap layer thickness. A relatively close fit was achieved between the measured data and two-dimensional electron gas densities predicted from simulations of the band diagrams. The simulations also indicated the presence of a two-dimensional hole gas at the upper interface of GaN/AlGaN/GaN structures with sufficiently thick GaN cap layers. A surface Fermi-level pinning position of 1.7 eV for AlGaN and 0.9-1.0 eV for GaN, and an interface polarization charge density of 1.6x10(13)-1.7x10(13) cm(-2), were extracted from the simulations. (C) 2003 American Institute of Physics

    Abnormal oscillatory brain dynamics in schizophrenia: a sign of deviant communication in neural network?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Slow waves in the delta (0.5–4 Hz) frequency range are indications of normal activity in sleep. In neurological disorders, focal electric and magnetic slow wave activity is generated in the vicinity of structural brain lesions. Initial studies, including our own, suggest that the distribution of the focal concentration of generators of slow waves (dipole density in the delta frequency band) also distinguishes patients with psychiatric disorders such as schizophrenia, affective disorders, and posttraumatic stress disorder.</p> <p>Methods</p> <p>The present study examined the distribution of focal slow wave activity (ASWA: abnormal slow wave activity) in116 healthy subjects, 76 inpatients with schizophrenic or schizoaffective diagnoses and 42 inpatients with affective (ICD-10: F3) or neurotic/reactive (F4) diagnoses using a newly refined measure of dipole density. Based on 5-min resting magnetoencephalogram (MEG), sources of activity in the 1–4 Hz frequency band were determined by equivalent dipole fitting in anatomically defined cortical regions.</p> <p>Results</p> <p>Compared to healthy subjects the schizophrenia sample was characterized by significantly more intense slow wave activity, with maxima in frontal and central areas. In contrast, affective disorder patients exhibited less slow wave generators mainly in frontal and central regions when compared to healthy subjects and schizophrenia patients. In both samples, frontal ASWA were related to affective symptoms.</p> <p>Conclusion</p> <p>In schizophrenic patients, the regions of ASWA correspond to those identified for gray matter loss. This suggests that ASWA might be evaluated as a measure of altered neuronal network architecture and communication, which may mediate psychopathological signs.</p

    12 W/mm power density AlGaN/GaN HEMTs on sapphire substrate

    No full text
    Record power performance at 4 GHz has been obtained using field-plated AlGaN/GaN HEMTs on sapphire substrate. High power density (12 W/mm) as well as high efficiency (58%) have been measured. A comparison between devices with and without field plate on the same sample showed a significant reduction in knee-voltage walk-out for the field-plated device, thus enabling high power and efficiency operation
    • …
    corecore