63 research outputs found

    Early life trauma, depression and the glucocorticoid receptor gene - an epigenetic perspective

    Get PDF
    Background. Hopes to identify genetic susceptibility loci accounting for the heritability seen in unipolar depression have not been fully realized. Family history remains the ‘gold standard’ for both risk stratification and prognosis in complex phenotypes such as depression. Meanwhile, the physiological mechanisms underlying life-event triggers for depression remain opaque. Epigenetics, comprising heritable changes in gene expression other than alterations of the nucleotide sequence, may offer a way to deepen our understanding of the aetiology and pathophysiology of unipolar depression and optimize treatments. A heuristic target for exploring the relevance of epigenetic changes in unipolar depression is the hypothalamic–pituitary–adrenal (HPA) axis. The glucocorticoid receptor (GR) gene (NR3C1) has been found to be susceptible to epigenetic modification, specifically DNA methylation, in the context of environmental stress such as early life trauma, which is an established risk for depression later in life. Method. In this paper we discuss the progress that has been made by studies that have investigated the relationship between depression, early trauma, the HPA axis and the NR3C1 gene. Difficulties with the design of these studies are also explored. Results. Future efforts will need to comprehensively address epigenetic natural histories at the population, tissue, cell and gene levels. The complex interactions between the epigenome, genome and environment, as well as ongoing nosological difficulties, also pose significant challenges. Conclusions. The work that has been done so far is nevertheless encouraging and suggests potential mechanistic and biomarker roles for differential DNA methylation patterns in NR3C1 as well as novel therapeutic targets

    The cancer-associated cell migration protein TSPAN1 is under control of androgens and its upregulation increases prostate cancer cell migration.

    Get PDF
    Cell migration drives cell invasion and metastatic progression in prostate cancer and is a major cause of mortality and morbidity. However the mechanisms driving cell migration in prostate cancer patients are not fully understood. We previously identified the cancer-associated cell migration protein Tetraspanin 1 (TSPAN1) as a clinically relevant androgen regulated target in prostate cancer. Here we find that TSPAN1 is acutely induced by androgens, and is significantly upregulated in prostate cancer relative to both normal prostate tissue and benign prostate hyperplasia (BPH). We also show for the first time, that TSPAN1 expression in prostate cancer cells controls the expression of key proteins involved in cell migration. Stable upregulation of TSPAN1 in both DU145 and PC3 cells significantly increased cell migration and induced the expression of the mesenchymal markers SLUG and ARF6. Our data suggest TSPAN1 is an androgen-driven contributor to cell survival and motility in prostate cancer.This article is freely available via Open Access. Click on the Additional Link above to access the full-text via the publisher's site

    Epigenetics: new possibilities for drug discovery

    No full text
    • …
    corecore