66 research outputs found

    Primary thyroid lymphoma: Case report and review of the literature

    Get PDF
    AbstractPrimary thyroid lymphoma (PTL) is defined as a lymphoma involving only the thyroid gland or both thyroid gland and neck lymph nodes, without contiguous spread or distant metastases from other areas of involvement at diagnosis. Despite its rarity, PTL should be promptly recognized because its management is quite different from the treatment of other neoplasms of the thyroid gland.In the present study, we report a case of PTL treated by surgery and adjuvant chemotherapy. Otherwise, literature review allowed us to define main characteristics of this located lymphoma

    Electron irradiation induced reduction of the permittivity in chalcogenide glass (As2S3) thin film

    Full text link
    We investigate the effect of electron beam irradiation on the dielectric properties of As2S3 Chalcogenide glass. By means of low-loss Electron Energy Loss Spectroscopy, we derive the permittivity function, its dispersive relation, and calculate the refractive index and absorption coefficients under the constant permeability approximation. The measured and calculated results show, to the best of our knowledge, a heretofore unseen phenomenon: the reduction in the permittivity of <40%, and consequently a modification of the refractive index follows, reducing it by 20%, hence suggesting a significant change on the optical properties of the material. The plausible physical phenomena leading to these observations are discussed in terms of the homopolar and heteropolar bond dynamics under high energy absorption.Comment: 22 pages, 7 figures, manuscript in preparation to send to Physical Review

    Highly acid-durable carbon coated Co3O4 nanoarrays as efficient oxygen evolution electrocatalysts

    Get PDF
    Most oxygen evolution reaction (OER) electrocatalysts are not stable in corrosive acids. Even the expensive RuO2 or IrO2, the most acid-resistant oxides, can be dissolved at an oxidative potential. Herein, we realize that the failures of OER catalysts are mostly caused by the weak interface between catalysts and the substrates. Hence, the study of the interface structure between catalysts and substrates is critical. In this work, we observe that the cheap OER catalysts Co3O4 can be more durable than the state-of-the-art RuO2 if the interface quality is good enough. The Co3O4 nanosheets deposited on carbon paper (Co3O4/CP) is prepared by electroplating of Co-species and followed by a two-step calcination process. The 1st step occurs in vacuum in order to maintain the surface integrity of the carbon paper and converts Co-species to Co(II)O. The 2nd step is a calcination in ambient conditions which enables the complete transformation of Co(II)O to Co3O4 without degrading the mechanical strength of the Co3O4-CP interface. Equally important, an in situ formation of a layer of amorphous carbon on top of Co3O4 further enhances the OER catalyst stability. Therefore, these key advances make the Co3O4 catalyst highly active toward the OER in 0.5 M H2SO4 with a small overpotential (370 mV), to reach 10 mA/cm2. The observed long lifetime for 86.8 h at a constant current density of 100 mA/cm2, is among the best of the reported in literature so far, even longer than the state-of-art RuO2 on CP. Overall, our study provides a new insight and methodology for the construction of a high-performance and high stability OER electrocatalysts in corrosive acidic environments

    Nuclear Importation of Mariner Transposases among Eukaryotes: Motif Requirements and Homo-Protein Interactions

    Get PDF
    Mariner-like elements (MLEs) are widespread transposable elements in animal genomes. They have been divided into at least five sub-families with differing host ranges. We investigated whether the ability of transposases encoded by Mos1, Himar1 and Mcmar1 to be actively imported into nuclei varies between host belonging to different eukaryotic taxa. Our findings demonstrate that nuclear importation could restrict the host range of some MLEs in certain eukaryotic lineages, depending on their expression level. We then focused on the nuclear localization signal (NLS) in these proteins, and showed that the first 175 N-terminal residues in the three transposases were required for nuclear importation. We found that two components are involved in the nuclear importation of the Mos1 transposase: an SV40 NLS-like motif (position: aa 168 to 174), and a dimerization sub-domain located within the first 80 residues. Sequence analyses revealed that the dimerization moiety is conserved among MLE transposases, but the Himar1 and Mcmar1 transposases do not contain any conserved NLS motif. This suggests that other NLS-like motifs must intervene in these proteins. Finally, we showed that the over-expression of the Mos1 transposase prevents its nuclear importation in HeLa cells, due to the assembly of transposase aggregates in the cytoplasm

    Three non-autonomous signals collaborate for nuclear targeting of CrMYC2, a Catharanthus roseus bHLH transcription factor

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>CrMYC2 is an early jasmonate-responsive bHLH transcription factor involved in the regulation of the expression of the genes of the terpenic indole alkaloid biosynthesis pathway in <it>Catharanthus roseus</it>. In this paper, we identified the amino acid domains necessary for the nuclear targeting of CrMYC2.</p> <p>Findings</p> <p>We examined the intracellular localization of whole CrMYC2 and of various deletion mutants, all fused with GFP, using a transient expression assay in onion epidermal cells. Sequence analysis of this protein revealed the presence of four putative basic nuclear localization signals (NLS). Assays showed that none of the predicted NLS is active alone. Further functional dissection of CrMYC2 showed that the nuclear targeting of this transcription factor involves the cooperation of three domains located in the C-terminal region of the protein. The first two domains are located at amino acid residues 454-510 and 510-562 and contain basic classical monopartite NLSs; these regions are referred to as NLS3 (KRPRKR) and NLS4 (EAERQRREK), respectively. The third domain, between residues 617 and 652, is rich in basic amino acids that are well conserved in other phylogenetically related bHLH transcription factors. Our data revealed that these three domains are inactive when isolated but act cooperatively to target CrMYC2 to the nucleus.</p> <p>Conclusions</p> <p>This study identified three amino acid domains that act in cooperation to target the CrMYC2 transcription factor to the nucleus. Further fine structure/function analysis of these amino acid domains will allow the identification of new NLS domains and will allow the investigation of the related molecular mechanisms involved in the nuclear targeting of the CrMYC2 bHLH transcription factor.</p

    Enhancement of Dielectric Permittivity of Ti<inf>3</inf>C<inf>2</inf>T<inf>x</inf> MXene/Polymer Composites by Controlling Flake Size and Surface Termination

    No full text
    We report a strong effect of the MXene flake size and surface termination on the dielectric permittivity of MXene polymer composites. Specifically, poly(vinylidene fluoride-trifluoro-ethylene-chlorofluoroehylene) or P(VDF-TrFE-CFE) polymer embedded with large (ca. 4.5 μm) Ti3C2Tx flakes achieves a dielectric permittivity as high as 105 near the percolation limit of 15.3 wt % MXene loading. In comparison, the dielectric permittivity of MXene/P(VDF-TrFE-CFE) using small (ca. 1.5 μm) Ti3C2Tx flakes (S-MXene) achieves a dielectric permittivity of 104 near the percolation limit of 16.8 wt %. Meanwhile, increasing the concentration of surface functional groups on the MXene surface (-O, -F, and -OH) by extending the etching time gives a dielectric constant of 2204 near the percolation limit of 15.7 wt %. The ratio of permittivity to the loss factor of our large flake composite is superior to that of the small flake composite, and to all previously reported carbon-based fillers in P(VDF-TrFE-CFE). We show that the dielectric permittivity enhancement is strongly related to the charge accumulation at the surfaces between the two dimensional (2D) MXene flakes and the polymer matrix under an external applied electric field

    Electron-Induced Synthesis of Ozone in a Dioxygen Matrix

    No full text
    Ozone (O3) was synthesized in the condensed phase induced by electron bombardment of multilayer films of molecular oxygen condensed at temperatures below 30 K on metal surfaces. O3 formation was demonstrated by the observation of the asymmetric stretching (v3) and bending (v2) normal modes of vibration in a high-resolution electron energy-loss spectroscopy experiment, and by characteristic changes in electron-stimulated desorption of O-. The threshold electron energy for the O3 formation is found at 3.5±0,2 eV. It corresponds to the formation of O(3P) associated with O-(2P) by dissociative electron attachment at condensed O2, followed by the third body reaction O+O2 +O2→O3+O2. Above 5.1 eV bombarding energy, dissociative excitation of the O̊̇̑2̑ (c1Σu -,C3Δu,A3Σu+ ,B3Σu-) states is the main source of atomic oxygen O(3P) or O(1D) involved in the O3 synthesis

    Journal of the American Chemical Society

    No full text
    Toroidal structures based on self-assembly of predesigned building blocks are well-established in the literature, but spontaneous self-organization to prepare such structures has not been reported to date. Here, organic–inorganic hybrid microtoroids synthesized by simultaneous coordination-driven assembly of amphiphilic molecules and hydrophilic polymers are reported. Mixing amphiphilic molecules with iron(III) chloride and hydrophilic polymers in water leads, within minutes, to the formation of starlike nanostructures. A spontaneous self-organization of these nanostructures is then triggered to form stable hybrid microtoroids. Interestingly, the toroids exhibit anisotropic hierarchical growth, giving rise to a layered toroidal framework. These microstructures are mechanically robust and can act as templates to host metallic nanoparticles such as gold and silver. Understanding the nature of spontaneous assembly driven by coordination multiple non-covalent interactions can help explain the well-ordered complexity of many biological organisms in addition to expanding the available tools to mimic such structures at a molecular level
    corecore