429 research outputs found

    Closed Trapped Surfaces in Cosmology

    Full text link
    The existence of closed trapped surfaces need not imply a cosmological singularity when the spatial hypersurfaces are compact. This is illustrated by a variety of examples, in particular de Sitter spacetime admits many closed trapped surfaces and obeys the null convergence condition but is non-singular in the k=+1 frame.Comment: 11 pages. To appear in GRG, Vol 35 (August issue

    Neutrino Oscillations Induced by Gravitational Recoil Effects

    Get PDF
    Quantum gravitational fluctuations of the space-time background, described by virtual D branes, may induce neutrino oscillations if a tiny violation of the Lorentz invariance (or a violation of the equivalence principle) is imposed. In this framework, the oscillation length of massless neutrinos turns out to be proportional to M/E^2, where E is the neutrino energy and M is the mass scale characterizing the topological fluctuations in the vacuum. Such a functional dependence on the energy is the same obtained in the framework of loop quantum gravity.Comment: 5 pages, LaTex fil

    Numerical simulation of nonunitary gravity-induced localization

    Full text link
    The localization of a quantum state is numerically exhibited in a nonunitary Newtonian model for gravity. It is shown that an unlocalized state of a ball of mass just above the expected threshold of 10^11 proton masses evolves into a mixed state with vanishing coherences above some localization lengths.Comment: RevTex, 6 figures available on request from the authors To appear in Physica

    Dynamical Formation of Horizons in Recoiling D Branes

    Get PDF
    A toy calculation of string/D-particle interactions within a world-sheet approach indicates that quantum recoil effects - reflecting the gravitational back-reaction on space-time foam due to the propagation of energetic particles - induces the appearance of a microscopic event horizon, or `bubble', inside which stable matter can exist. The scattering event causes this horizon to expand, but we expect quantum effects to cause it to contract again, in a `bounce' solution. Within such `bubbles', massless matter propagates with an effective velocity that is less than the velocity of light in vacuo, which may lead to observable violations of Lorentz symmetry that may be tested experimentally. The conformal invariance conditions in the interior geometry of the bubbles select preferentially three for the number of the spatial dimensions, corresponding to a consistent formulation of the interaction of D3 branes with recoiling D particles, which are allowed to fluctuate independently only on the D3-brane hypersurface.Comment: 25 pages LaTeX, 4 eps figures include

    The evolution of density perturbations in f(R) gravity

    Full text link
    We give a rigorous and mathematically well defined presentation of the Covariant and Gauge Invariant theory of scalar perturbations of a Friedmann-Lemaitre-Robertson-Walker universe for Fourth Order Gravity, where the matter is described by a perfect fluid with a barotropic equation of state. The general perturbations equations are applied to a simple background solution of R^n gravity. We obtain exact solutions of the perturbations equations for scales much bigger than the Hubble radius. These solutions have a number of interesting features. In particular, we find that for all values of n there is always a growing mode for the density contrast, even if the universe undergoes an accelerated expansion. Such a behaviour does not occur in standard General Relativity, where as soon as Dark Energy dominates, the density contrast experiences an unrelenting decay. This peculiarity is sufficiently novel to warrant further investigation on fourth order gravity models.Comment: 21 pages, 2 figures, typos corrected, submitted to PR

    Linearisation instability of gravity waves?

    Get PDF
    Gravity waves in irrotational dust spacetimes are characterised by nonzero magnetic Weyl tensor HabH_{ab}. In the linearised theory, the divergence of HabH_{ab} is set to zero. Recently Lesame et al. [Phys. Rev. D {\bf 53}, 738 (1996)] presented an argument to show that, in the exact nonlinear theory, divH=0div H=0 forces Hab=0H_{ab}=0, thus implying a linearisation instability for gravity waves interacting with matter. However a sign error in the equations invalidates their conclusion. Bianchi type V spacetimes are shown to include examples with divH=0Habdiv H=0\neq H_{ab}. An improved covariant formalism is used to show that in a generic irrotational dust spacetime, the covariant constraint equations are preserved under evolution. It is shown elsewhere that \mbox{div} H=0 does not generate further conditions.Comment: 8 pages Revtex; to appear Phys. Rev.

    Decoherence of Macroscopic Closed Systems within Newtonian Quantum Gravity

    Full text link
    A theory recently proposed by the author aims to explain decoherence and the thermodynamical behaviour of closed systems within a conservative, unitary, framework for quantum gravity by assuming that the operators tied to the gravitational degrees of freedom are unobservable and equating physical entropy with matter-gravity entanglement entropy. Here we obtain preliminary results on the extent of decoherence this theory predicts. We treat first a static state which, if one were to ignore quantum gravitational effects, would be a quantum superposition of two spatially displaced states of a single classically well describable ball of uniform mass density in empty space. Estimating the quantum gravitational effects on this system within a simple Newtonian approximation, we obtain formulae which predict e.g. that as long as the mass of the ball is considerably larger than the Planck mass, such a would-be-coherent static superposition will actually be decohered whenever the separation of the centres of mass of the two ball-states excedes a small fraction (which decreases as the mass of the ball increases) of the ball radius. We then obtain a formula for the quantum gravitational correction to the would-be-pure density matrix of a non-relativistic many-body Schroedinger wave function and argue that this formula predicts decoherence between configurations which differ (at least) in the "relocation" of a cluster of particles of Planck mass. We estimate the entropy of some simple model closed systems, finding a tendency for it to increase with "matter-clumping" suggestive of a link with existing phenomenological discussions of cosmological entropy increase.Comment: 11 pages, plain TeX, no figures. Accepted for publication as a "Letter to the Editor" in "Classical and Quantum Gravity

    Is it possible to recover information from the black-hole radiation?

    Full text link
    In the framework of communication theory, we analyse the gedanken experiment in which beams of quanta bearing information are flashed towards a black hole. We show that stimulated emission at the horizon provides a correlation between incoming and outgoing radiations consisting of bosons. For fermions, the mechanism responsible for the correlation is the Fermi exclusion principle. Each one of these mechanisms is responsible for the a partial transfer of the information originally coded in the incoming beam to the black--hole radiation. We show that this process is very efficient whenever stimulated emission overpowers spontaneous emission (bosons). Thus, black holes are not `ultimate waste baskets of information'.Comment: 9 pages (2 figures available upon request), CERN-TH 6811/93, (LateX file

    Quantum Dissipative Effects and Neutrinos : current constraints and future perspectives

    Get PDF
    We establish the most stringent experimental constraints coming from recent terrestrial neutrino experiments on quantum mechanical decoherence effects in neutrino systems. Taking a completely phenomenological approach, we probe vacuum oscillations plus quantum decoherence between two neutrino species in the channels νμντ\nu_\mu \to \nu_\tau, νμνe\nu_\mu \to \nu_e and νeντ\nu_e \to \nu_\tau, admitting that the quantum decoherence parameter γ\gamma is related to the neutrino energy EνE_\nu as : γ=γ0(Eν/GeV)n\gamma=\gamma_0 (E_\nu/\text{GeV})^{n}, with n=1,0,1n=-1,0,1 and 2. Our bounds are valid for a neutrino mass squared difference compatible with the atmospheric, the solar and, in many cases, the LSND scale. We also qualitatively discuss the perspectives of the future long baseline neutrino experiments to further probe quantum dissipation.Comment: 26 pages, 8 encapsulated postscript figure

    Anisotropic Pressures at Ultra-stiff Singularities and the Stability of Cyclic Universes

    Full text link
    We show that the inclusion of simple anisotropic pressures stops the isotropic Friedmann universe being a stable attractor as an initial or final singularity is approached when pressures can exceed the energy density. This shows that the situation with isotropic pressures, studied earlier in the context of cyclic and ekpyrotic cosmologies, is not generic, and Kasner-like behaviour occurs when simple pressure anisotropies are present. We find all the asymptotic behaviours and determine the dynamics when the anisotropic principal pressures are proportional to the density. We expect distortions and anisotropies to be significantly amplified through a simple cosmological bounce in cyclic or ekpyrotic cosmologies when ultra-stiff pressures are present.Comment: 18 pages, 2 figure
    corecore