88 research outputs found

    Mechano‐Optical Characterization of Extrusion Flow Instabilities in Styrene‐Butadiene Rubbers: Investigating the Influence of Molecular Properties and Die Geometry

    Get PDF
    The extrusion flow instabilities of two commercial styrene-butadiene rubbers are investigated as they vary in isomer content (1,4-cis, 1,4-trans, and 1,2 con- formation) of the butadiene monomer and the molecular architecture (linear, branched). The investigated samples have similar multimodal molecular weight distribution. Two geometries of extrusion dies, slit and round capillary, are compared in terms of the type and the spatial characteristics of the flow instabilities. The latter are quantified using three methods: a highly pressure sensitive slit die, online and offline optical analysis. The highly pressure- sensitive slit die has three piezoelectric pressure transducers (Δt ≈ 10−3 s and Δp ≈ 10−5 bar) placed along the die length. The characteristic frequency (fChar.) of the flow instabilities follows a power law behavior as a function of shear\ua0rate to a 0.5 power for both materials, f Char. ∝ γ app.. A qualitative model is used\ua0to predict the spatial characteristic wavelength (λ) of the flow instabilities from round capillary to slit dies and vice versa. Slip velocities (Vs) are used to quantify the slippage at slit and round capillary dies as well

    “Fracture” phenomena in shearing flow of viscous liquids

    Full text link
    In start-up of steady shearing flow of two viscous unentangled liquids, namely low-molecular-weight polystyrene and α-D-glucose, the shear stress catastrophically collapses if the shear rate is raised above a value corresponding to a critical initial shear stress of around 0.1–0.3 MPa. The time dependence of the shear stress during this process is similar for the two liquids, but visualization of samples in situ and after quenching reveals significant differences. For α-D-glucose, the stress collapse evidently results from debonding of the sample from the rheometer tool, while in polystyrene, bubbles open up within the sample, as occurs in cavitation. Some similarities are pointed out between these phenomena and that of “lubrication failure” reported in the tribology literature.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47212/1/397_2004_Article_BF00368135.pd

    Rheo-PIV of a shear-banding wormlike micellar solution under large amplitude oscillatory shear

    Get PDF
    We explore the behavior of a wormlike micellar solution under both steady and large amplitude oscillatory shear (LAOS) in a cone–plate geometry through simultaneous bulk rheometry and localized velocimetric measurements. First, particle image velocimetry is used to show that the shear-banded profiles observed in steady shear are in qualitative agreement with previous results for flow in the cone–plate geometry. Then under LAOS, we observe the onset of shear-banded flow in the fluid as it is progressively deformed into the non-linear regime—this onset closely coincides with the appearance of higher harmonics in the periodic stress signal measured by the rheometer. These harmonics are quantified using the higher-order elastic and viscous Chebyshev coefficients e [subscript n] and v [subscript n] , which are shown to grow as the banding behavior becomes more pronounced. The high resolution of the velocimetric imaging system enables spatiotemporal variations in the structure of the banded flow to be observed in great detail. Specifically, we observe that at large strain amplitudes (γ [subscript 0] ≥ 1), the fluid exhibits a three-banded velocity profile with a high shear rate band located in-between two lower shear rate bands adjacent to each wall. This band persists over the full cycle of the oscillation, resulting in no phase lag being observed between the appearance of the band and the driving strain amplitude. In addition to the kinematic measurements of shear banding, the methods used to prevent wall slip and edge irregularities are discussed in detail, and these methods are shown to have a measurable effect on the stability boundaries of the shear-banded flow.Spain. Ministerio de Educación y Ciencia (MEC) (Project FIS2010-21924-C02-02

    Polymer Flow Through Porous Media: Numerical Prediction of the Contribution of Slip to the Apparent Viscosity.

    Get PDF
    The flow of polymer solutions in porous media is often described using Darcy’s law with an apparent viscosity capturing the observed thinning or thickening effects. While the macroscale form is well accepted, the fundamentals of the pore-scale mechanisms, their link with the apparent viscosity, and their relative influence are still a matter of debate. Besides the complex effects associated with the rheology of the bulk fluid, the flow is also deeply influenced by the mechanisms occurring close to the solid/liquid interface, where polymer molecules can arrange and interact in a complex manner. In this paper, we focus on a repulsive mechanism, where polymer molecules are pushed away from the interface, yielding a so-called depletion layer in the vicinity of the wall. This depletion layer acts as a lubricating film that may be represented by an effective slip boundary condition. Here, our goal is to provide a simple mean to evaluate the contribution of this slip effect to the apparent viscosity. To do so, we solve the pore-scale flow numerically in idealized porous media with a slip length evaluated analytically in a tube. Besides its simplicity, the advantage of our approach is also that it captures relatively well the apparent viscosity obtained from core-flood experiments, using only a limited number of inputs. Therefore, it may be useful in many applications to rapidly estimate the influence of the depletion layer effect over the macroscale flow and its relative contribution compared to other phenomena, such as non-Newtonian effects

    Molecular dynamics for linear polymer melts in bulk and confined systems under shear flow

    Get PDF
    In this work, we analyzed the individual chain dynamics for linear polymer melts under shear flow for bulk and confined systems using atomistic nonequilibrium molecular dynamics simulations of unentangled (C50H102) and slightly entangled (C178H358) polyethylene melts. While a certain similarity appears for the bulk and confined systems for the dynamic mechanisms of polymer chains in response to the imposed flow field, the interfacial chain dynamics near the boundary solid walls in the confined system are significantly different from the corresponding bulk chain dynamics. Detailed molecular-level analysis of the individual chain motions in a wide range of flow strengths are carried out to characterize the intrinsic molecular mechanisms of the bulk and interfacial chains in three flow regimes (weak, intermediate, and strong). These mechanisms essentially underlie various macroscopic structural and rheological properties of polymer systems, such as the mean-square chain end-to-end distance, probability distribution of the chain end-to-end distance, viscosity, and the first normal stress coefficient. Further analysis based on the mesoscopic Brightness method provides additional structural information about the polymer chains in association with their molecular mechanisms

    Rheology and melt fracture of poly(lactides)

    Get PDF
    The wall slip and melt fracture behaviour of several commercial polylactides (PLAs) have been investigated. PLAs with molecular weights greater than a certain value were found to slip, with the slip velocity to increase with decrease of molecular weight. The onset of melt fracture for the high molecular weight PLAs was found to occur at around 0.2 to 0.3 MPa, depending on the geometrical characteristics of the dies. Addition of 0.5wt% of a poly(e-caprolactone) (PCL) into the PLA that exhibits melt fracture was found to be effective in eliminating and delaying the onset of melt fracture to higher shear rates

    Excess pressure losses in the capillary flow of molten polymers

    No full text
    corecore