1,535 research outputs found

    Estimating operator norms using covering nets

    Get PDF
    We present several polynomial- and quasipolynomial-time approximation schemes for a large class of generalized operator norms. Special cases include the 2q2\rightarrow q norm of matrices for q>2q>2, the support function of the set of separable quantum states, finding the least noisy output of entanglement-breaking quantum channels, and approximating the injective tensor norm for a map between two Banach spaces whose factorization norm through 1n\ell_1^n is bounded. These reproduce and in some cases improve upon the performance of previous algorithms by Brand\~ao-Christandl-Yard and followup work, which were based on the Sum-of-Squares hierarchy and whose analysis used techniques from quantum information such as the monogamy principle of entanglement. Our algorithms, by contrast, are based on brute force enumeration over carefully chosen covering nets. These have the advantage of using less memory, having much simpler proofs and giving new geometric insights into the problem. Net-based algorithms for similar problems were also presented by Shi-Wu and Barak-Kelner-Steurer, but in each case with a run-time that is exponential in the rank of some matrix. We achieve polynomial or quasipolynomial runtimes by using the much smaller nets that exist in 1\ell_1 spaces. This principle has been used in learning theory, where it is known as Maurey's empirical method.Comment: 24 page

    Quantum de Finetti Theorems under Local Measurements with Applications

    Get PDF
    Quantum de Finetti theorems are a useful tool in the study of correlations in quantum multipartite states. In this paper we prove two new quantum de Finetti theorems, both showing that under tests formed by local measurements one can get a much improved error dependence on the dimension of the subsystems. We also obtain similar results for non-signaling probability distributions. We give the following applications of the results: We prove the optimality of the Chen-Drucker protocol for 3-SAT, under the exponential time hypothesis. We show that the maximum winning probability of free games can be estimated in polynomial time by linear programming. We also show that 3-SAT with m variables can be reduced to obtaining a constant error approximation of the maximum winning probability under entangled strategies of O(m^{1/2})-player one-round non-local games, in which the players communicate O(m^{1/2}) bits all together. We show that the optimization of certain polynomials over the hypersphere can be performed in quasipolynomial time in the number of variables n by considering O(log(n)) rounds of the Sum-of-Squares (Parrilo/Lasserre) hierarchy of semidefinite programs. As an application to entanglement theory, we find a quasipolynomial-time algorithm for deciding multipartite separability. We consider a result due to Aaronson -- showing that given an unknown n qubit state one can perform tomography that works well for most observables by measuring only O(n) independent and identically distributed (i.i.d.) copies of the state -- and relax the assumption of having i.i.d copies of the state to merely the ability to select subsystems at random from a quantum multipartite state. The proofs of the new quantum de Finetti theorems are based on information theory, in particular on the chain rule of mutual information.Comment: 39 pages, no figure. v2: changes to references and other minor improvements. v3: added some explanations, mostly about Theorem 1 and Conjecture 5. STOC version. v4, v5. small improvements and fixe

    Shadow Tomography of Quantum States

    Full text link
    We introduce the problem of *shadow tomography*: given an unknown DD-dimensional quantum mixed state ρ\rho, as well as known two-outcome measurements E1,,EME_{1},\ldots,E_{M}, estimate the probability that EiE_{i} accepts ρ\rho, to within additive error ε\varepsilon, for each of the MM measurements. How many copies of ρ\rho are needed to achieve this, with high probability? Surprisingly, we give a procedure that solves the problem by measuring only O~(ε4log4MlogD)\widetilde{O}\left( \varepsilon^{-4}\cdot\log^{4} M\cdot\log D\right) copies. This means, for example, that we can learn the behavior of an arbitrary nn-qubit state, on all accepting/rejecting circuits of some fixed polynomial size, by measuring only nO(1)n^{O\left( 1\right)} copies of the state. This resolves an open problem of the author, which arose from his work on private-key quantum money schemes, but which also has applications to quantum copy-protected software, quantum advice, and quantum one-way communication. Recently, building on this work, Brand\~ao et al. have given a different approach to shadow tomography using semidefinite programming, which achieves a savings in computation time.Comment: 29 pages, extended abstract appeared in Proceedings of STOC'2018, revised to give slightly better upper bound (1/eps^4 rather than 1/eps^5) and lower bounds with explicit dependence on the dimension

    Efficient Quantum Pseudorandomness

    Get PDF
    Randomness is both a useful way to model natural systems and a useful tool for engineered systems, e.g. in computation, communication and control. Fully random transformations require exponential time for either classical or quantum systems, but in many case pseudorandom operations can emulate certain properties of truly random ones. Indeed in the classical realm there is by now a well-developed theory of such pseudorandom operations. However the construction of such objects turns out to be much harder in the quantum case. Here we show that random quantum circuits are a powerful source of quantum pseudorandomness. This gives the for the first time a polynomialtime construction of quantum unitary designs, which can replace fully random operations in most applications, and shows that generic quantum dynamics cannot be distinguished from truly random processes. We discuss applications of our result to quantum information science, cryptography and to understanding self-equilibration of closed quantum dynamics.Comment: 6 pages, 1 figure. Short version of http://arxiv.org/abs/1208.069

    Entanglement can completely defeat quantum noise

    Get PDF
    We describe two quantum channels that individually cannot send any information, even classical, without some chance of decoding error. But together a single use of each channel can send quantum information perfectly reliably. This proves that the zero-error classical capacity exhibits superactivation, the extreme form of the superadditivity phenomenon in which entangled inputs allow communication over zero capacity channels. But our result is stronger still, as it even allows zero-error quantum communication when the two channels are combined. Thus our result shows a new remarkable way in which entanglement across two systems can be used to resist noise, in this case perfectly. We also show a new form of superactivation by entanglement shared between sender and receiver.Comment: 4 pages, 1 figur

    The cryptographic power of misaligned reference frames

    Full text link
    Suppose that Alice and Bob define their coordinate axes differently, and the change of reference frame between them is given by a probability distribution mu over SO(3). We show that this uncertainty of reference frame is of no use for bit commitment when mu is uniformly distributed over a (sub)group of SO(3), but other choices of mu can give rise to a partially or even asymptotically secure bit commitment.Comment: 4 pages Latex; v2 has a new referenc

    Superdense coding of quantum states

    Get PDF
    We describe a method to non-obliviously communicate a 2l-qubit quantum state by physically transmitting l+o(l) qubits of communication, and by consuming l ebits of entanglement and some shared random bits. In the non-oblivious scenario, the sender has a classical description of the state to be communicated. Our method can be used to communicate states that are pure or entangled with the sender's system; l+o(l) and 3l+o(l) shared random bits are sufficient respectively.Comment: 5 pages, revtex

    MHC-linked and un-linked class I genes in the wallaby

    Get PDF
    Background: MHC class I antigens are encoded by a rapidly evolving gene family comprising classical and non-classical genes that are found in all vertebrates and involved in diverse immune functions. However, there is a fundamental difference between the organization of class I genes in mammals and non-mammals. Non-mammals have a single classical gene responsible for antigen presentation, which is linked to the antigen processing genes, including TAP. This organization allows co-evolution of advantageous class Ia/ TAP haplotypes. In contrast, mammals have multiple classical genes within the MHC, which are separated from the antigen processing genes by class III genes. It has been hypothesized that separation of classical class I genes from antigen processing genes in mammals allowed them to duplicate. We investigated this hypothesis by characterizing the class I genes of the tammar wallaby, a model marsupial that has a novel MHC organization, with class I genes located within the MHC and 10 other chromosomal locations. Results: Sequence analysis of 14 BACs containing 15 class I genes revealed that nine class I genes, including one to three classical class I, are not linked to the MHC but are scattered throughout the genome. Kangaroo Endogenous Retroviruses (KERVs) were identified flanking the MHC un-linked class I. The wallaby MHC contains four non-classical class I, interspersed with antigen processing genes. Clear orthologs of non-classical class I are conserved in distant marsupial lineages. Conclusion: We demonstrate that classical class I genes are not linked to antigen processing genes in the wallaby and provide evidence that retroviral elements were involved in their movement. The presence of retroviral elements most likely facilitated the formation of recombination hotspots and subsequent diversification of class I genes. The classical class I have moved away from antigen processing genes in eutherian mammals and the wallaby independently, but both lineages appear to have benefited from this loss of linkage by increasing the number of classical genes, perhaps enabling response to a wider range of pathogens. The discovery of non-classical orthologs between distantly related marsupial species is unusual for the rapidly evolving class I genes and may indicate an important marsupial specific function
    corecore