We present several polynomial- and quasipolynomial-time approximation schemes
for a large class of generalized operator norms. Special cases include the
2→q norm of matrices for q>2, the support function of the set of
separable quantum states, finding the least noisy output of
entanglement-breaking quantum channels, and approximating the injective tensor
norm for a map between two Banach spaces whose factorization norm through
ℓ1n is bounded.
These reproduce and in some cases improve upon the performance of previous
algorithms by Brand\~ao-Christandl-Yard and followup work, which were based on
the Sum-of-Squares hierarchy and whose analysis used techniques from quantum
information such as the monogamy principle of entanglement. Our algorithms, by
contrast, are based on brute force enumeration over carefully chosen covering
nets. These have the advantage of using less memory, having much simpler proofs
and giving new geometric insights into the problem. Net-based algorithms for
similar problems were also presented by Shi-Wu and Barak-Kelner-Steurer, but in
each case with a run-time that is exponential in the rank of some matrix. We
achieve polynomial or quasipolynomial runtimes by using the much smaller nets
that exist in ℓ1 spaces. This principle has been used in learning theory,
where it is known as Maurey's empirical method.Comment: 24 page