2,815 research outputs found

    CP violating asymmetry in H±→W±h1H^\pm\to W^\pm h_1 decays

    Full text link
    The CP violating asymmetry from the decay rates H±→W±h1H^\pm\to W^\pm h_1 of charged Higgs bosons into the lightest neutral Higgs boson and a W±W^\pm boson is calculated and discussed in the complex MSSM. The contributions from all complex phases are considered, especially from the top-squark trilinear coupling, which induces a large contribution to the CP asymmetry.Comment: 19 pages, 10 figures, version published in JHE

    Hadronic production of bottom-squark pairs with electroweak contributions

    Get PDF
    We present the complete computation of the tree-level and the next-to-leading order electroweak contributions to bottom-squark pair production at the LHC. The computation is performed within the minimal supersymmetric extension of the Standard Model. We discuss the numerical impact of these contributions in several supersymmetric scenarios.Comment: 33 pages, v2: preprint numbers correcte

    Electroweak corrections to W-boson pair production at the LHC

    Get PDF
    Vector-boson pair production ranks among the most important Standard-Model benchmark processes at the LHC, not only in view of on-going Higgs analyses. These processes may also help to gain a deeper understanding of the electroweak interaction in general, and to test the validity of the Standard Model at highest energies. In this work, the first calculation of the full one-loop electroweak corrections to on-shell W-boson pair production at hadron colliders is presented. We discuss the impact of the corrections on the total cross section as well as on relevant differential distributions. We observe that corrections due to photon-induced channels can be amazingly large at energies accessible at the LHC, while radiation of additional massive vector bosons does not influence the results significantly.Comment: 29 pages, 15 figures, 4 tables; some references and comments on \gamma\gamma -> WW added; matches version published in JHE

    Quantum Gravity in Everyday Life: General Relativity as an Effective Field Theory

    Get PDF
    This article is meant as a summary and introduction to the ideas of effective field theory as applied to gravitational systems. Contents: 1. Introduction 2. Effective Field Theories 3. Low-Energy Quantum Gravity 4. Explicit Quantum Calculations 5. ConclusionsComment: 56 pages, 2 figures, JHEP style, Invited review to appear in Living Reviews of Relativit

    The Fate of Chrysotile-Induced Multipolar Mitosis and Aneuploid Population in Cultured Lung Cancer Cells

    Get PDF
    Chrysotile is one of the six types of asbestos, and it is the only one that can still be commercialized in many countries. Exposure to other types of asbestos has been associated with serious diseases, such as lung carcinomas and pleural mesotheliomas. The association of chrysotile exposure with disease is controversial. However, in vitro studies show the mutagenic potential of chrysotile, which can induce DNA and cell damage. The present work aimed to analyze alterations in lung small cell carcinoma cultures after 48 h of chrysotile exposure, followed by 2, 4 and 8 days of recovery in fiber-free culture medium. Some alterations, such as aneuploid cell formation, increased number of cells in G2/M phase and cells in multipolar mitosis were observed even after 8 days of recovery. The presence of chrysotile fibers in the cell cultures was detected and cell morphology was observed by laser scanning confocal microscopy. After 4 and 8 days of recovery, only a few chrysotile fragments were present in some cells, and the cellular morphology was similar to that of control cells. Cells transfected with the GFP-tagged α-tubulin plasmid were treated with chrysotile for 24 or 48 h and cells in multipolar mitosis were observed by time-lapse microscopy. Fates of these cells were established: retention in metaphase, cell death, progression through M phase generating more than two daughter cells or cell fusion during telophase or cytokinesis. Some of them were related to the formation of aneuploid cells and cells with abnormal number of centrosomes

    Antiferromagnetic spintronics

    Get PDF
    Antiferromagnetic materials are magnetic inside, however, the direction of their ordered microscopic moments alternates between individual atomic sites. The resulting zero net magnetic moment makes magnetism in antiferromagnets invisible on the outside. It also implies that if information was stored in antiferromagnetic moments it would be insensitive to disturbing external magnetic fields, and the antiferromagnetic element would not affect magnetically its neighbors no matter how densely the elements were arranged in a device. The intrinsic high frequencies of antiferromagnetic dynamics represent another property that makes antiferromagnets distinct from ferromagnets. The outstanding question is how to efficiently manipulate and detect the magnetic state of an antiferromagnet. In this article we give an overview of recent works addressing this question. We also review studies looking at merits of antiferromagnetic spintronics from a more general perspective of spin-ransport, magnetization dynamics, and materials research, and give a brief outlook of future research and applications of antiferromagnetic spintronics.Comment: 13 pages, 7 figure

    The Custodial Randall-Sundrum Model: From Precision Tests to Higgs Physics

    Full text link
    We reexamine the Randall-Sundrum (RS) model with enlarged gauge symmetry SU(2)_L x SU(2)_R x U(1)_X x P_LR in the presence of a brane-localized Higgs sector. In contrast to the existing literature, we perform the Kaluza-Klein (KK) decomposition within the mass basis, which avoids the truncation of the KK towers. Expanding the low-energy spectrum as well as the gauge couplings in powers of the Higgs vacuum expectation value, we obtain analytic formulas which allow for a deep understanding of the model-specific protection mechanisms of the T parameter and the left-handed Z-boson couplings. In particular, in the latter case we explain which contributions escape protection and identify them with the irreducible sources of P_LR symmetry breaking. We furthermore show explicitly that no protection mechanism is present in the charged-current sector confirming existing model-independent findings. The main focus of the phenomenological part of our work is a detailed discussion of Higgs-boson couplings and their impact on physics at the CERN Large Hadron Collider. For the first time, a complete one-loop calculation of all relevant Higgs-boson production and decay channels is presented, incorporating the effects stemming from the extended electroweak gauge-boson and fermion sectors.Comment: 74 pages, 13 figures, 3 tables. v2: Matches version published in JHE

    Higgs Low-Energy Theorem (and its corrections) in Composite Models

    Get PDF
    The Higgs low-energy theorem gives a simple and elegant way to estimate the couplings of the Higgs boson to massless gluons and photons induced by loops of heavy particles. We extend this theorem to take into account possible nonlinear Higgs interactions resulting from a strong dynamics at the origin of the breaking of the electroweak symmetry. We show that, while it approximates with an accuracy of order a few percents single Higgs production, it receives corrections of order 50% for double Higgs production. A full one-loop computation of the gg->hh cross section is explicitly performed in MCHM5, the minimal composite Higgs model based on the SO(5)/SO(4) coset with the Standard Model fermions embedded into the fundamental representation of SO(5). In particular we take into account the contributions of all fermionic resonances, which give sizeable (negative) corrections to the result obtained considering only the Higgs nonlinearities. Constraints from electroweak precision and flavor data on the top partners are analyzed in detail, as well as direct searches at the LHC for these new fermions called to play a crucial role in the electroweak symmetry breaking dynamics.Comment: 30 pages + appendices and references, 12 figures. v2: discussion of flavor constraints improved; references added; electroweak fit updated, results unchanged. Matches published versio

    Liquid-gas phase transition in nuclear multifragmentation

    Get PDF
    The equation of state of nuclear matter suggests that at suitable beam energies the disassembling hot system formed in heavy ion collisions will pass through a liquid-gas coexistence region. Searching for the signatures of the phase transition has been a very important focal point of experimental endeavours in heavy ion collisions, in the last fifteen years. Simultaneously theoretical models have been developed to provide information about the equation of state and reaction mechanisms consistent with the experimental observables. This article is a review of this endeavour.Comment: 63 pages, 27 figures, submitted to Adv. Nucl. Phys. Some typos corrected, minor text change
    • …
    corecore