15,536 research outputs found

    Spin-Peierls states of quantum antiferromagnets on the CaV4O9Ca V_4 O_9 lattice

    Full text link
    We discuss the quantum paramagnetic phases of Heisenberg antiferromagnets on the 1/5-depleted square lattice found in CaV4O9Ca V_4 O_9. The possible phases of the quantum dimer model on this lattice are obtained by a mapping to a quantum-mechanical height model. In addition to the ``decoupled'' phases found earlier, we find a possible intermediate spin-Peierls phase with spontaneously-broken lattice symmetry. Experimental signatures of the different quantum paramagnetic phases are discussed.Comment: 9 pages; 2 eps figure

    Charge order, superconductivity, and a global phase diagram of doped antiferromagnets

    Full text link
    We investigate the interplay between lattice-symmetry breaking and superconducting order in a two-dimensional model of doped antiferromagnets, with long-range Coulomb interactions and Sp(2N) spin symmetry, in the large-N limit. Our results motivate the outline of a global phase diagram for the cuprate superconductors. We describe the quantum transitions between the phases, the evolution of their fermion excitation spectrum, and the experimental implications.Comment: 4 pages, 4 figs, final version as publishe

    Dense loops, supersymmetry, and Goldstone phases in two dimensions

    Full text link
    Loop models in two dimensions can be related to O(N) models. The low-temperature dense-loops phase of such a model, or of its reformulation using a supergroup as symmetry, can have a Goldstone broken-symmetry phase for N<2. We argue that this phase is generic for -2< N <2 when crossings of loops are allowed, and distinct from the model of non-crossing dense loops first studied by Nienhuis [Phys. Rev. Lett. 49, 1062 (1982)]. Our arguments are supported by our numerical results, and by a lattice model solved exactly by Martins et al. [Phys. Rev. Lett. 81, 504 (1998)].Comment: RevTeX, 5 pages, 3 postscript figure

    QUAGMIRE v1.3: a quasi-geostrophic model for investigating rotating fluids experiments

    Get PDF
    QUAGMIRE is a quasi-geostrophic numerical model for performing fast, high-resolution simulations of multi-layer rotating annulus laboratory experiments on a desktop personal computer. The model uses a hybrid finite-difference/spectral approach to numerically integrate the coupled nonlinear partial differential equations of motion in cylindrical geometry in each layer. Version 1.3 implements the special case of two fluid layers of equal resting depths. The flow is forced either by a differentially rotating lid, or by relaxation to specified streamfunction or potential vorticity fields, or both. Dissipation is achieved through Ekman layer pumping and suction at the horizontal boundaries, including the internal interface. The effects of weak interfacial tension are included, as well as the linear topographic beta-effect and the quadratic centripetal beta-effect. Stochastic forcing may optionally be activated, to represent approximately the effects of random unresolved features. A leapfrog time stepping scheme is used, with a Robert filter. Flows simulated by the model agree well with those observed in the corresponding laboratory experiments

    Hamiltonian Description of Composite Fermions: Aftermath

    Full text link
    The Lowest Landau Level (LLL), long distance theory of Composite Fermions (CF) developed by Murthy and myself is minimally extended to all distances, guided by very general principles. The resulting theory is mathematically consistent, and physically appealing: we clearly see the electron and the vortices binding to form the CF. The meaning of the constraints, their role in ensuring compressibility of dipolar objects at ν=1/2\nu =1/2, and the observability of dipoles are clarified.Comment: Revised for publication in PRL, 4 - epsilon page

    Superconducting quantum phase transitions tuned by magnetic impurity and magnetic field in ultrathin a-Pb films

    Full text link
    Superconducting quantum phase transitions tuned by disorder (d), paramagnetic impurity (MI) and perpendicular magnetic field (B) have been studied in homogeneously disordered ultrathin a-Pb films. The MI-tuned transition is characterized by progressive suppression of the critical temperature to zero and a continuous transition to a weakly insulating normal state with increasing MI density. In all important aspects, the d-tuned transition closely resembles the MI-tuned transition and both appear to be fermionic in nature. The B-tuned transition is qualitatively different and probably bosonic. In the critical region it exhibits transport behavior that suggests a B-induced mesoscale phase separation and presence of Cooper pairing in the insulating state.Comment: 17 pages, 4 figure

    Doncaster Cancer Survivorship Programme: Evaluation Report

    Get PDF

    Bulk and edge correlations in the compressible half-filled quantum Hall state

    Full text link
    We study bulk and edge correlations in the compressible half-filled state, using a modified version of the plasma analogy. The corresponding plasma has anomalously weak screening properties, and as a consequence we find that the correlations along the edge do not decay algebraically as in the Laughlin (incompressible) case, while the bulk correlations decay in the same way. The results suggest that due to the strong coupling between charged modes on the edge and the neutral Fermions in the bulk, reflected by the weak screening in the plasma analogue, the (attractive) correlation hole is not well defined on the edge. Hence, the system there can be modeled as a free Fermi gas of {\em electrons} (with an appropriate boundary condition). We finally comment on a possible scenario, in which the Laughlin-like dynamical edge correlations may nevertheless be realized.Comment: package now includes the file epsfig.sty, needed to incorporate properly the 8 magnificent figure

    The X-ray Luminosity Function of "The Antennae" Galaxies (NGC4038/39) and the Nature of Ultra-Luminous X-ray Sources

    Full text link
    We derive the X-ray luminosity function (XLF) of the X-ray source population detected in the Chandra observation of NGC4038/39 (the Antennae). We explicitly include photon counting and spectral parameter uncertainties in our calculations. The cumulative XLF is well represented by a flat power law (α=−0.47\alpha=-0.47), similar to those describing the XLFs of other star-forming systems (e.g. M82, the disk of M81), but different from those of early type galaxies. This result associates the X-ray source population in the Antennae with young High Mass X-ray Binaries. In comparison with less actively star-forming galaxies, the XLF of the Antennae has a highly significant excess of sources with luminosities above 10^{39} erg\s (Ultra Luminous Sources; ULXs). We discuss the nature of these sources, based on the XLF and on their general spectral properties, as well as their optical counterparts discussed in Paper III. We conclude that the majority of the ULXs cannot be intermediate mass black-holes (M > 10-1000 \msun) binaries, unless they are linked to the remnants of massive Population III stars (the Madau & Rees model). Instead, their spatial and multiwavelength properties can be well explained by beamed emission as a consequence of supercritical accretion. Binaries with a neutron star or moderate mass black-hole (up to 20\msun), and B2 to A type star companions would be consistent with our data. In the beaming scenario, the XLF should exibit caracteristic breaks that will be visible in future deeper observations of the Antennae.Comment: 15 pages, submitted to Ap
    • …
    corecore