2,195 research outputs found

    Comment on `Series expansions from the corner transfer matrix renormalization group method: the hard-squares model'

    Full text link
    Earlier this year Chan extended the low-density series for the hard-squares partition function κ(z)\kappa(z) to 92 terms. Here we analyse this extended series focusing on the behaviour at the dominant singularity zdz_d which lies on on the negative fugacity axis. We find that the series has a confluent singularity of order 2 at zdz_d with exponents θ=0.83333(2)\theta=0.83333(2) and θ=1.6676(3)\theta'= 1.6676(3). We thus confirm that the exponent θ\theta has the exact value 56\frac56 as observed by Dhar.Comment: 5 pages, 1 figure, IoP macros. Expanded second and final versio

    Complex-Temperature Singularities in the d=2d=2 Ising Model. III. Honeycomb Lattice

    Get PDF
    We study complex-temperature properties of the uniform and staggered susceptibilities χ\chi and χ(a)\chi^{(a)} of the Ising model on the honeycomb lattice. From an analysis of low-temperature series expansions, we find evidence that χ\chi and χ(a)\chi^{(a)} both have divergent singularities at the point z=1zz=-1 \equiv z_{\ell} (where z=e2Kz=e^{-2K}), with exponents γ=γ,a=5/2\gamma_{\ell}'= \gamma_{\ell,a}'=5/2. The critical amplitudes at this singularity are calculated. Using exact results, we extract the behaviour of the magnetisation MM and specific heat CC at complex-temperature singularities. We find that, in addition to its zero at the physical critical point, MM diverges at z=1z=-1 with exponent β=1/4\beta_{\ell}=-1/4, vanishes continuously at z=±iz=\pm i with exponent βs=3/8\beta_s=3/8, and vanishes discontinuously elsewhere along the boundary of the complex-temperature ferromagnetic phase. CC diverges at z=1z=-1 with exponent α=2\alpha_{\ell}'=2 and at v=±i/3v=\pm i/\sqrt{3} (where v=tanhKv = \tanh K) with exponent αe=1\alpha_e=1, and diverges logarithmically at z=±iz=\pm i. We find that the exponent relation α+2β+γ=2\alpha'+2\beta+\gamma'=2 is violated at z=1z=-1; the right-hand side is 4 rather than 2. The connections of these results with complex-temperature properties of the Ising model on the triangular lattice are discussed.Comment: 22 pages, latex, figures appended after the end of the text as a compressed, uuencoded postscript fil

    3D ultrastructural organization of whole Chlamydomonas reinhardtii cells studied by nanoscale soft x-ray tomography

    Get PDF
    The complex architecture of their structural elements and compartments is a hallmark of eukaryotic cells. The creation of high resolution models of whole cells has been limited by the relatively low resolution of conventional light microscopes and the requirement for ultrathin sections in transmission electron microscopy. We used soft x-ray tomography to study the 3D ultrastructural organization of whole cells of the unicellular green alga Chlamydomonas reinhardtii at unprecedented spatial resolution. Intact frozen hydrated cells were imaged using the natural x-ray absorption contrast of the sample without any staining. We applied different fiducial-based and fiducial-less alignment procedures for the 3D reconstructions. The reconstructed 3D volumes of the cells show features down to 30 nm in size. The whole cell tomograms reveal ultrastructural details such as nuclear envelope membranes, thylakoids, basal apparatus, and flagellar microtubule doublets. In addition, the x-ray tomograms provide quantitative data from the cell architecture. Therefore, nanoscale soft x-ray tomography is a new valuable tool for numerous qualitative and quantitative applications in plant cell biology

    Low temperature series expansions for the square lattice Ising model with spin S > 1

    Full text link
    We derive low-temperature series (in the variable u=exp[βJ/S2]u = \exp[-\beta J/S^2]) for the spontaneous magnetisation, susceptibility and specific heat of the spin-SS Ising model on the square lattice for S=32S=\frac32, 2, 52\frac52, and 3. We determine the location of the physical critical point and non-physical singularities. The number of non-physical singularities closer to the origin than the physical critical point grows quite rapidly with SS. The critical exponents at the singularities which are closest to the origin and for which we have reasonably accurate estimates are independent of SS. Due to the many non-physical singularities, the estimates for the physical critical point and exponents are poor for higher values of SS, though consistent with universality.Comment: 14 pages, LaTeX with IOP style files (ioplppt.sty), epic.sty and eepic.sty. To appear in J. Phys.

    A numerical adaptation of SAW identities from the honeycomb to other 2D lattices

    Full text link
    Recently, Duminil-Copin and Smirnov proved a long-standing conjecture by Nienhuis that the connective constant of self-avoiding walks on the honeycomb lattice is 2+2.\sqrt{2+\sqrt{2}}. A key identity used in that proof depends on the existence of a parafermionic observable for self-avoiding walks on the honeycomb lattice. Despite the absence of a corresponding observable for SAW on the square and triangular lattices, we show that in the limit of large lattices, some of the consequences observed on the honeycomb lattice persist on other lattices. This permits the accurate estimation, though not an exact evaluation, of certain critical amplitudes, as well as critical points, for these lattices. For the honeycomb lattice an exact amplitude for loops is proved.Comment: 21 pages, 7 figures. Changes in v2: Improved numerical analysis, giving greater precision. Explanation of why we observe what we do. Extra reference

    First Results from the X Ray Microscopy Beamline U41 PGM1 XM at BESSY II

    Get PDF
    The newly designed beamline U41 PGM1 XM at BESSY II for the Helmholtz Zentrum Berlin HZB transmission soft X ray microscope TXM was successfully set up and went in operation in 2017 [1]. During the commissioning of the beamline we determined the spectral resolution, horizontal focus value at the exit slit and the flux for different undulator harmonics. The experimental results meet the values from raytracing calculations. For the horizontal focus at the exit slit position we calculated a FWHM value of 108 m at 510 eV which is in good agreement with the experimental value of 107 m. The flux for photon energies higher than 550 eV is now much higher compared to the previous U41 SGM XM beamline [2] Fig.

    Spanning tree generating functions and Mahler measures

    Full text link
    We define the notion of a spanning tree generating function (STGF) anzn\sum a_n z^n, which gives the spanning tree constant when evaluated at z=1,z=1, and gives the lattice Green function (LGF) when differentiated. By making use of known results for logarithmic Mahler measures of certain Laurent polynomials, and proving new results, we express the STGFs as hypergeometric functions for all regular two and three dimensional lattices (and one higher-dimensional lattice). This gives closed form expressions for the spanning tree constants for all such lattices, which were previously largely unknown in all but one three-dimensional case. We show for all lattices that these can also be represented as Dirichlet LL-series. Making the connection between spanning tree generating functions and lattice Green functions produces integral identities and hypergeometric connections, some of which appear to be new.Comment: 26 pages. Dedicated to F Y Wu on the occasion of his 80th birthday. This version has additional references, additional calculations, and minor correction

    Self-avoiding walks and polygons on the triangular lattice

    Full text link
    We use new algorithms, based on the finite lattice method of series expansion, to extend the enumeration of self-avoiding walks and polygons on the triangular lattice to length 40 and 60, respectively. For self-avoiding walks to length 40 we also calculate series for the metric properties of mean-square end-to-end distance, mean-square radius of gyration and the mean-square distance of a monomer from the end points. For self-avoiding polygons to length 58 we calculate series for the mean-square radius of gyration and the first 10 moments of the area. Analysis of the series yields accurate estimates for the connective constant of triangular self-avoiding walks, μ=4.150797226(26)\mu=4.150797226(26), and confirms to a high degree of accuracy several theoretical predictions for universal critical exponents and amplitude combinations.Comment: 24 pages, 6 figure

    Zeros of the Partition Function for Higher--Spin 2D Ising Models

    Get PDF
    We present calculations of the complex-temperature zeros of the partition functions for 2D Ising models on the square lattice with spin s=1s=1, 3/2, and 2. These give insight into complex-temperature phase diagrams of these models in the thermodynamic limit. Support is adduced for a conjecture that all divergences of the magnetisation occur at endpoints of arcs of zeros protruding into the FM phase. We conjecture that there are 4[s2]24[s^2]-2 such arcs for s1s \ge 1, where [x][x] denotes the integral part of xx.Comment: 8 pages, latex, 3 uuencoded figure

    New extended high temperature series for the N-vector spin models on three-dimensional bipartite lattices

    Get PDF
    High temperature expansions for the susceptibility and the second correlation moment of the classical N-vector model (O(N) symmetric Heisenberg model) on the sc and the bcc lattices are extended to order β19\beta^{19} for arbitrary N. For N= 2,3,4.. we present revised estimates of the critical parameters from the newly computed coefficients.Comment: 11 pages, latex, no figures, to appear in Phys. Rev.
    corecore