2,195 research outputs found
Comment on `Series expansions from the corner transfer matrix renormalization group method: the hard-squares model'
Earlier this year Chan extended the low-density series for the hard-squares
partition function to 92 terms. Here we analyse this extended
series focusing on the behaviour at the dominant singularity which lies
on on the negative fugacity axis. We find that the series has a confluent
singularity of order 2 at with exponents and
. We thus confirm that the exponent has the exact
value as observed by Dhar.Comment: 5 pages, 1 figure, IoP macros. Expanded second and final versio
Complex-Temperature Singularities in the Ising Model. III. Honeycomb Lattice
We study complex-temperature properties of the uniform and staggered
susceptibilities and of the Ising model on the honeycomb
lattice. From an analysis of low-temperature series expansions, we find
evidence that and both have divergent singularities at the
point (where ), with exponents
. The critical amplitudes at this
singularity are calculated. Using exact results, we extract the behaviour of
the magnetisation and specific heat at complex-temperature
singularities. We find that, in addition to its zero at the physical critical
point, diverges at with exponent , vanishes
continuously at with exponent , and vanishes
discontinuously elsewhere along the boundary of the complex-temperature
ferromagnetic phase. diverges at with exponent
and at (where ) with exponent , and
diverges logarithmically at . We find that the exponent relation
is violated at ; the right-hand side is 4
rather than 2. The connections of these results with complex-temperature
properties of the Ising model on the triangular lattice are discussed.Comment: 22 pages, latex, figures appended after the end of the text as a
compressed, uuencoded postscript fil
3D ultrastructural organization of whole Chlamydomonas reinhardtii cells studied by nanoscale soft x-ray tomography
The complex architecture of their structural elements and compartments is a hallmark of eukaryotic cells. The creation of high resolution models of whole cells has been limited by the relatively low resolution of conventional light microscopes and the requirement for ultrathin sections in transmission electron microscopy. We used soft x-ray tomography to study the 3D ultrastructural organization of whole cells of the unicellular green alga Chlamydomonas reinhardtii at unprecedented spatial resolution. Intact frozen hydrated cells were imaged using the natural x-ray absorption contrast of the sample without any staining. We applied different fiducial-based and fiducial-less alignment procedures for the 3D reconstructions. The reconstructed 3D volumes of the cells show features down to 30 nm in size. The whole cell tomograms reveal ultrastructural details such as nuclear envelope membranes, thylakoids, basal apparatus, and flagellar microtubule doublets. In addition, the x-ray tomograms provide quantitative data from the cell architecture. Therefore, nanoscale soft x-ray tomography is a new valuable tool for numerous qualitative and quantitative applications in plant cell biology
Low temperature series expansions for the square lattice Ising model with spin S > 1
We derive low-temperature series (in the variable )
for the spontaneous magnetisation, susceptibility and specific heat of the
spin- Ising model on the square lattice for , 2, , and
3. We determine the location of the physical critical point and non-physical
singularities. The number of non-physical singularities closer to the origin
than the physical critical point grows quite rapidly with . The critical
exponents at the singularities which are closest to the origin and for which we
have reasonably accurate estimates are independent of . Due to the many
non-physical singularities, the estimates for the physical critical point and
exponents are poor for higher values of , though consistent with
universality.Comment: 14 pages, LaTeX with IOP style files (ioplppt.sty), epic.sty and
eepic.sty. To appear in J. Phys.
A numerical adaptation of SAW identities from the honeycomb to other 2D lattices
Recently, Duminil-Copin and Smirnov proved a long-standing conjecture by
Nienhuis that the connective constant of self-avoiding walks on the honeycomb
lattice is A key identity used in that proof depends on
the existence of a parafermionic observable for self-avoiding walks on the
honeycomb lattice. Despite the absence of a corresponding observable for SAW on
the square and triangular lattices, we show that in the limit of large
lattices, some of the consequences observed on the honeycomb lattice persist on
other lattices. This permits the accurate estimation, though not an exact
evaluation, of certain critical amplitudes, as well as critical points, for
these lattices. For the honeycomb lattice an exact amplitude for loops is
proved.Comment: 21 pages, 7 figures. Changes in v2: Improved numerical analysis,
giving greater precision. Explanation of why we observe what we do. Extra
reference
First Results from the X Ray Microscopy Beamline U41 PGM1 XM at BESSY II
The newly designed beamline U41 PGM1 XM at BESSY II for the Helmholtz Zentrum Berlin HZB transmission soft X ray microscope TXM was successfully set up and went in operation in 2017 [1]. During the commissioning of the beamline we determined the spectral resolution, horizontal focus value at the exit slit and the flux for different undulator harmonics. The experimental results meet the values from raytracing calculations. For the horizontal focus at the exit slit position we calculated a FWHM value of 108 m at 510 eV which is in good agreement with the experimental value of 107 m. The flux for photon energies higher than 550 eV is now much higher compared to the previous U41 SGM XM beamline [2] Fig.
Spanning tree generating functions and Mahler measures
We define the notion of a spanning tree generating function (STGF) , which gives the spanning tree constant when evaluated at and gives
the lattice Green function (LGF) when differentiated. By making use of known
results for logarithmic Mahler measures of certain Laurent polynomials, and
proving new results, we express the STGFs as hypergeometric functions for all
regular two and three dimensional lattices (and one higher-dimensional
lattice). This gives closed form expressions for the spanning tree constants
for all such lattices, which were previously largely unknown in all but one
three-dimensional case. We show for all lattices that these can also be
represented as Dirichlet -series. Making the connection between spanning
tree generating functions and lattice Green functions produces integral
identities and hypergeometric connections, some of which appear to be new.Comment: 26 pages. Dedicated to F Y Wu on the occasion of his 80th birthday.
This version has additional references, additional calculations, and minor
correction
Self-avoiding walks and polygons on the triangular lattice
We use new algorithms, based on the finite lattice method of series
expansion, to extend the enumeration of self-avoiding walks and polygons on the
triangular lattice to length 40 and 60, respectively. For self-avoiding walks
to length 40 we also calculate series for the metric properties of mean-square
end-to-end distance, mean-square radius of gyration and the mean-square
distance of a monomer from the end points. For self-avoiding polygons to length
58 we calculate series for the mean-square radius of gyration and the first 10
moments of the area. Analysis of the series yields accurate estimates for the
connective constant of triangular self-avoiding walks, ,
and confirms to a high degree of accuracy several theoretical predictions for
universal critical exponents and amplitude combinations.Comment: 24 pages, 6 figure
Zeros of the Partition Function for Higher--Spin 2D Ising Models
We present calculations of the complex-temperature zeros of the partition
functions for 2D Ising models on the square lattice with spin , 3/2, and
2. These give insight into complex-temperature phase diagrams of these models
in the thermodynamic limit. Support is adduced for a conjecture that all
divergences of the magnetisation occur at endpoints of arcs of zeros protruding
into the FM phase. We conjecture that there are such arcs for , where denotes the integral part of .Comment: 8 pages, latex, 3 uuencoded figure
New extended high temperature series for the N-vector spin models on three-dimensional bipartite lattices
High temperature expansions for the susceptibility and the second correlation
moment of the classical N-vector model (O(N) symmetric Heisenberg model) on the
sc and the bcc lattices are extended to order for arbitrary N. For
N= 2,3,4.. we present revised estimates of the critical parameters from the
newly computed coefficients.Comment: 11 pages, latex, no figures, to appear in Phys. Rev.
- …
