349 research outputs found

    On the Growth of Al_2 O_3 Scales

    Get PDF
    Understanding the growth of Al2O3 scales requires knowledge of the details of the chemical reactions at the scale–gas and scale–metal interfaces, which in turn requires specifying how the creation/annihilation of O and Al vacancies occurs at these interfaces. The availability of the necessary electrons and holes to allow for such creation/annihilation is a crucial aspect of the scaling reaction. The electronic band structure of polycrystalline Al2O3 thus plays a decisive role in scale formation and is considered in detail, including the implications of a density functional theory (DFT) calculation of the band structure of a Σ7 View the MathML source bicrystal boundary, for which the atomic structure of the boundary was known from an independent DFT energy-minimization calculation and comparisons with an atomic-resolution transmission electron micrograph of the same boundary. DFT calculations of the formation energy of O and Al vacancies in bulk Al2O3 in various charge states as a function of the Fermi energy suggested that electronic conduction in Al2O3 scales most likely involves excitation of both electrons and holes, which are localized on singly charged O vacancies, View the MathML source and doubly charged Al vacancies, View the MathML source, respectively. We also consider the variation of the Fermi level across the scale and bending (“tilting”) of the conduction band minimum and valence band maximum due to the electric field developed during the scaling reaction. The band structure calculations suggest a new mechanism for the “reactive element” effect—a consequence of segregation of Y, Hf, etc., to grain boundaries in Al2O3 scales, which results in improved oxidation resistance—namely, that the effect is due to the modification of the near-band edge grain-boundary defect states rather than any blocking of diffusion pathways, as previously postulated. Secondly, Al2O3 scale formation is dominated by grain boundary as opposed to lattice diffusion, and there is unambiguous evidence for both O and Al countercurrent transport in Al2O3 scale-forming alloys. We postulate that such transport is mediated by migration of grain boundary disconnections containing charged jogs, rather than by jumping of isolated point defects in random high-angle grain boundaries

    MRGPRX2 Is the Codeine Receptor of Human Skin Mast Cells: Desensitization through β-Arrestin and Lack of Correlation with the FcεRI Pathway

    Get PDF
    Codeine stimulates skin mast cells and is therefore used in skin tests and as an inducer of experimental itch.MRGPRX2 responds to various drugs, including opioids, to elicit pseudoallergic reactions, but whether it represents the main opiate receptor of skin mast cells remains unknown. By combining a number of approaches, including the silencing of MRGPRX2, we now report that MRGPRX2 is indeed the dominant codeine receptor of dermal mast cells. Activation by codeine displayed profound subject variability and correlated with secretion elicited by compound 48/80 or substance P but not by FcεRI aggregation. Degranulation by codeine was attenuated by stem cell factor, whereas the opposite was found for FcεRI. Compound 48/80 or codeinealone was able to achieve maximum MRGPRX2 activation. MRGPRX2 was rapidly internalized on codeine binding in a b-arrestin-1‒dependent manner. Codeine-triggered b-arrestin activation was also established by the Tango assay. Prestimulation with MRGPRX2 agonists (but not C3a or FcεRI aggregation) resulted in refractoriness to further stimulation by the same or another MRGPRX2 ligand (cross desensitization). This was duplicated in a cell line (RBL-MRGPRX2). Collectively, codeine degranulates skin mast cells through MRGPRX2, at which it acts as a balanced ligand. It has yet to be determined whether codeine-induced refractoriness could be exploited to desensitize MRGPRX2 to prevent severe pseudoallergic reactions

    Importation of Hybrid Human-Associated Trypanosoma cruzi Strains of Southern South American Origin, Colombia.

    Get PDF
    We report the characterization of Trypanosoma cruzi of southern South American origin among humans, domestic vectors, and peridomestic hosts in Colombia using high-resolution nuclear and mitochondrial genotyping. Expanding our understanding of the geographic range of lineage TcVI, which is associated with severe Chagas disease, will help clarify risk of human infection for improved disease control

    The costs of preventing and treating chagas disease in Colombia

    Get PDF
    Background: The objective of this study is to report the costs of Chagas disease in Colombia, in terms of vector disease control programmes and the costs of providing care to chronic Chagas disease patients with cardiomyopathy. Methods: Data were collected from Colombia in 2004. A retrospective review of costs for vector control programmes carried out in rural areas included 3,084 houses surveyed for infestation with triatomine bugs and 3,305 houses sprayed with insecticide. A total of 63 patient records from 3 different hospitals were selected for a retrospective review of resource use. Consensus methodology with local experts was used to estimate care seeking behaviour and to complement observed data on utilisation. Findings: The mean cost per house per entomological survey was 4.4(inUS4.4 (in US of 2004), whereas the mean cost of spraying a house with insecticide was 27.Themaincostdriverofsprayingwasthepriceoftheinsecticide,whichvariedgreatly.TreatmentofachronicChagasdiseasepatientcostsbetween27. The main cost driver of spraying was the price of the insecticide, which varied greatly. Treatment of a chronic Chagas disease patient costs between 46.4 and 7,981peryearinColombia,dependingonseverityandthelevelofcareused.Combiningcostandutilisationestimatestheexpectedcostoftreatmentperpatientyearis7,981 per year in Colombia, depending on severity and the level of care used. Combining cost and utilisation estimates the expected cost of treatment per patient-year is 1,028, whereas lifetime costs averaged $11,619 per patient. Chronic Chagas disease patients have limited access to healthcare, with an estimated 22% of patients never seeking care. Conclusion: Chagas disease is a preventable condition that affects mostly poor populations living in rural areas. The mean costs of surveying houses for infestation and spraying infested houses were low in comparison to other studies and in line with treatment costs. Care seeking behaviour and the type of insurance affiliation seem to play a role in the facilities and type of care that patients use, thus raising concerns about equitable access to care. Preventing Chagas disease in Colombia would be cost-effective and could contribute to prevent inequalities in health and healthcare.Wellcome Trus

    Feasibility, drug safety, and effectiveness of etiological treatment programs for Chagas disease in Honduras, Guatemala, and Bolivia: 10-year experience of Médecins Sans Frontières

    Get PDF
    BACKGROUND: Chagas disease (American trypanosomiasis) is a zoonotic or anthropozoonotic disease caused by the parasite Trypanosoma cruzi. Predominantly affecting populations in poor areas of Latin America, medical care for this neglected disease is often lacking. Médecins Sans Frontières/Doctors Without Borders (MSF) has provided diagnostic and treatment services for Chagas disease since 1999. This report describes 10 years of field experience in four MSF programs in Honduras, Guatemala, and Bolivia, focusing on feasibility protocols, safety of drug therapy, and treatment effectiveness. METHODOLOGY: From 1999 to 2008, MSF provided free diagnosis, etiological treatment, and follow-up care for patients <18 years of age seropositive for T. cruzi in Yoro, Honduras (1999-2002); Olopa, Guatemala (2003-2006); Entre Ríos, Bolivia (2002-2006); and Sucre, Bolivia (2005-2008). Essential program components guaranteeing feasibility of implementation were information, education, and communication (IEC) at the community and family level; vector control; health staff training; screening and diagnosis; treatment and compliance, including family-based strategies for early detection of adverse events; and logistics. Chagas disease diagnosis was confirmed by testing blood samples using two different diagnostic tests. T. cruzi-positive patients were treated with benznidazole as first-line treatment, with appropriate counseling, consent, and active participation from parents or guardians for daily administration of the drug, early detection of adverse events, and treatment withdrawal, when necessary. Weekly follow-up was conducted, with adverse events recorded to assess drug safety. Evaluations of serological conversion were carried out to measure treatment effectiveness. Vector control, entomological surveillance, and health education activities were carried out in all projects with close interaction with national and regional programs. RESULTS: Total numbers of children and adolescents tested for T. cruzi in Yoro, Olopa, Entre Ríos, and Sucre were 24,471, 8,927, 7,613, and 19,400, respectively. Of these, 232 (0.9%), 124 (1.4%), 1,475 (19.4%), and 1,145 (5.9%) patients, respectively, were diagnosed as seropositive. Patients were treated with benznidazole, and early findings of seroconversion varied widely between the Central and South American programs: 87.1% and 58.1% at 18 months post-treatment in Yoro and Olopa, respectively; 5.4% by up to 60 months in Entre Ríos; and 0% at an average of 18 months in Sucre. Benznidazole-related adverse events were observed in 50.2% and 50.8% of all patients treated in Yoro and Olopa, respectively, and 25.6% and 37.9% of patients in Entre Ríos and Sucre, respectively. Most adverse events were mild and manageable. No deaths occurred in the treatment population. CONCLUSIONS: These results demonstrate the feasibility of implementing Chagas disease diagnosis and treatment programs in resource-limited settings, including remote rural areas, while addressing the limitations associated with drug-related adverse events. The variability in apparent treatment effectiveness may reflect differences in patient and parasite populations, and illustrates the limitations of current treatments and measures of efficacy. New treatments with improved safety profiles, pediatric formulations of existing and new drugs, and a faster, reliable test of cure are all urgently needed

    Evaluation of Spatially Targeted Strategies to Control Non-Domiciliated Triatoma dimidiata Vector of Chagas Disease

    Get PDF
    Chagas disease is one of the most important parasitic diseases in Latin America. Since the 1980's, many national and international initiatives have contributed to eliminate vectors developing inside human domiciles. Today's challenge is to control vectors that are non-adapted to the human domicile, but still able to transmit the parasite through regular short stay in the houses. Here, we assess the potential of different control strategies applied in specific spatial patterns using a mathematical model that reproduces the dynamic of dispersion of such ‘non-domiciliated’ vectors within a village of the Yucatan Peninsula, Mexico. We show that no single strategy applied in the periphery of the village, where the insects are more abundant, provides satisfying protection to the whole village. However, combining the use of insect screens in houses at the periphery of the village (to simultaneously fight insects dispersing from the garden and the forest), and the cleaning of the peri-domicile areas of the centre of the village (where sylvatic insects are absent), would provide a cost-effective control. This type of spatially mixed strategy offers a promising way to reduce the cost associated with the repeated interventions required to control non-domiciliated vectors that permanently attempt to infest houses

    Drug discovery for Chagas disease should consider Trypanosoma cruzi strain diversity.

    Get PDF
    This opinion piece presents an approach to standardisation of an important aspect of Chagas disease drug discovery and development: selecting Trypanosoma cruzi strains for in vitro screening. We discuss the rationale for strain selection representing T. cruzi diversity and provide recommendations on the preferred parasite stage for drug discovery, T. cruzi discrete typing units to include in the panel of strains and the number of strains/clones for primary screens and lead compounds. We also consider experimental approaches for in vitro drug assays. The Figure illustrates the current Chagas disease drug-discovery and development landscape
    corecore