135 research outputs found

    QacRβˆ’Cation Recognition Is Mediated by a Redundancy of Residues Capable of Charge Neutralization

    Get PDF
    ABSTRACT: The Staphylococcus aureus multidrug binding protein QacR binds to a broad spectrum of structurally dissimilar cationic, lipophilic drugs. Our previous structural analyses suggested that five QacR glutamic acid residues are critical for charge neutralization and specification of certain drugs. For example, E57 and E58 interact with berberine and with one of the positively charged moieties of the bivalent drug dequalinium. Here we report the structural and biochemical effects of substituting E57 and E58 with alanine and glutamine. Unexpectedly, individual substitutions of these residues did not significantly affect QacR drug binding affinity. Structures of QacR(E57Q) and QacR(E58Q) bound to dequalinium indicated that E57 and E58 are redundant for charge neutralization. The most significant finding was that berberine was reoriented in the QacR multidrug binding pocket so that its positive charge was neutralized by side chain oxygen atoms and aromatic residues. Together, these data emphasize the remarkable versatility of the QacR multidrug binding pocket, illustrating that the capacity of QacR to bind myriad cationic drugs is largely governed by the presence in the pocket of a redundancy of polar, charged, and aromatic residues that are capable of electrostatic neutralization. Multidrug resistant bacteria represent a major global health threat that has in great part arisen through the action o

    A Single Acidic Residue Can Guide Binding Site Selection but Does Not Govern QacR Cationic-Drug Affinity

    Get PDF
    Structures of the multidrug-binding repressor protein QacR with monovalent and bivalent cationic drugs revealed that the carboxylate side-chains of E90 and E120 were proximal to the positively charged nitrogens of the ligands ethidium, malachite green and rhodamine 6G, and therefore may contribute to drug neutralization and binding affinity. Here, we report structural, biochemical and in vivo effects of substituting these glutamate residues. Unexpectedly, substitutions had little impact on ligand affinity or in vivo induction capabilities. Structures of QacR(E90Q) and QacR(E120Q) with ethidium or malachite green took similar global conformations that differed significantly from all previously described QacR-drug complexes but still prohibited binding to cognate DNA. Strikingly, the QacR(E90Q)-rhodamine 6G complex revealed two mutually exclusive rhodamine 6G binding sites. Despite multiple structural changes, all drug binding was essentially isoenergetic. Thus, these data strongly suggest that rather than contributing significantly to ligand binding affinity, the role of acidic residues lining the QacR multidrug-binding pocket is primarily to attract and guide cationic drugs to the β€œbest available” positions within the pocket that elicit QacR induction

    Interplay in the Selection of Fluoroquinolone Resistance and Bacterial Fitness

    Get PDF
    Fluoroquinolones are antibacterial drugs that inhibit DNA Gyrase and Topoisomerase IV. These essential enzymes facilitate chromosome replication and RNA transcription by regulating chromosome supercoiling. High-level resistance to fluoroquinolones in E. coli requires the accumulation of multiple mutations, including those that alter target genes and genes regulating drug efflux. Previous studies have shown some drug-resistance mutations reduce bacterial fitness, leading to the selection of fitness-compensatory mutations. The impact of fluoroquinolone-resistance on bacterial fitness was analyzed in constructed isogenic strains carrying up to 5 resistance mutations. Some mutations significantly decreased bacterial fitness both in vitro and in vivo. We identified low-fitness triple-mutants where the acquisition of a fourth resistance mutation significantly increased fitness in vitro and in vivo while at the same time dramatically decreasing drug susceptibility. The largest effect occurred with the addition of a parC mutation (Topoisomerase IV) to a low-fitness strain carrying resistance mutations in gyrA (DNA Gyrase) and marR (drug efflux regulation). Increased fitness was accompanied by a significant change in the level of gyrA promoter activity as measured in an assay of DNA supercoiling. In selection and competition experiments made in the absence of drug, parC mutants that improved fitness and reduced susceptibility were selected. These data suggest that natural selection for improved growth in bacteria with low-level resistance to fluoroquinolones could in some cases select for further reductions in drug susceptibility. Thus, increased resistance to fluoroquinolones could be selected even in the absence of further exposure to the drug

    Genomic mining of prokaryotic repressors for orthogonal logic gates

    Get PDF
    Genetic circuits perform computational operations based on interactions between freely diffusing molecules within a cell. When transcription factors are combined to build a circuit, unintended interactions can disrupt its function. Here, we apply 'part mining' to build a library of 73 TetR-family repressors gleaned from prokaryotic genomes. The operators of a subset were determined using an in vitro method, and this information was used to build synthetic promoters. The promoters and repressors were screened for cross-reactions. Of these, 16 were identified that both strongly repress their cognate promoter (5- to 207-fold) and exhibit minimal interactions with other promoters. Each repressor-promoter pair was converted to a NOT gate and characterized. Used as a set of 16 NOT/NOR gates, there are >10[superscript 54] circuits that could be built by changing the pattern of input and output promoters. This represents a large set of compatible gates that can be used to construct user-defined circuits.United States. Air Force Office of Scientific Research (Award FA9550-11-C-0028)American Society for Engineering Education. National Defense Science and Engineering Graduate Fellowship (32 CFR 168a)United States. Defense Advanced Research Projects Agency. Chronical of Lineage Indicative of Origins (N66001-12-C-4016)United States. Office of Naval Research (N00014-13-1-0074)National Institutes of Health (U.S.) (GM095765)National Science Foundation (U.S.). Synthetic Biology Engineering Research Center (SA5284-11210

    A highly conserved transcriptional repressor controls a large regulon involved in lipid degradation in Mycobacterium smegmatis and Mycobacterium tuberculosis

    Get PDF
    The Mycobacterium tuberculosis TetR-type regulator Rv3574 has been implicated in pathogenesis as it is induced in vivo, and genome-wide essentiality studies show it is required for infection. As the gene is highly conserved in the mycobacteria, we deleted the Rv3574 orthologue in Mycobacterium smegmatis (MSMEG_6042) and used real-time quantitative polymerase chain reaction and microarray analyses to show that it represses the transcription both of itself and of a large number of genes involved in lipid metabolism. We identified a conserved motif within its own promoter (TnnAACnnGTTnnA) and showed that it binds as a dimer to 29 bp probes containing the motif. We found 16 and 31 other instances of the motif in intergenic regions of M. tuberculosis and M. smegmatis respectively. Combining the results of the microarray studies with the motif analyses, we predict that Rv3574 directly controls the expression of 83 genes in M. smegmatis, and 74 in M. tuberculosis. Many of these genes are known to be induced by growth on cholesterol in rhodococci, and palmitate in M. tuberculosis. We conclude that this regulator, designated elsewhere as kstR, controls the expression of genes used for utilizing diverse lipids as energy sources, possibly imported through the mce4 system

    National records of 3000 European bee and hoverfly species: A contribution to pollinator conservation

    Get PDF
    Pollinators play a crucial role in ecosystems globally, ensuring the seed production of most flowering plants. They are threatened by global changes and knowledge of their distribution at the national and continental levels is needed to implement efficient conservation actions, but this knowledge is still fragmented and/or difficult to access. As a step forward, we provide an updated list of around 3000 European bee and hoverfly species, reflecting their current distributional status at the national level (in the form of present, absent, regionally extinct, possibly extinct or non-native). This work was attainable by incorporating both published and unpublished data, as well as knowledge from a large set of taxonomists and ecologists in both groups. After providing the first National species lists for bees and hoverflies for many countries, we examine the current distributional patterns of these species and designate the countries with highest levels of species richness. We also show that many species are recorded in a single European country, highlighting the importance of articulating European and national conservation strategies. Finally, we discuss how the data provided here can be combined with future trait and Red List data to implement research that will further advance pollinator conservation

    Crystal Structure of an Integron Gene Cassette-Associated Protein from Vibrio cholerae Identifies a Cationic Drug-Binding Module

    Get PDF
    Background The direct isolation of integron gene cassettes from cultivated and environmental microbial sources allows an assessment of the impact of the integron/gene cassette system on the emergence of new phenotypes, such as drug resistance or virulence. A structural approach is being exploited to investigate the modularity and function of novel integron gene cassettes. Methodology/Principal Findings We report the 1.8 A crystal structure of Cass2, an integron-associated protein derived from an environmental V. cholerae. The structure defines a monomeric beta-barrel protein with a fold related to the effector-binding portion of AraC/XylS transcription activators. The closest homologs of Cass2 are multi-drug binding proteins, such as BmrR. Consistent with this, a binding pocket made up of hydrophobic residues and a single glutamate side chain is evident in Cass2, occupied in the crystal form by polyethylene glycol. Fluorescence assays demonstrate that Cass2 is capable of binding cationic drug compounds with submicromolar affinity. The Cass2 module possesses a protein interaction surface proximal to its drug-binding cavity with features homologous to those seen in multi-domain transcriptional regulators. Conclusions/Significance Genetic analysis identifies Cass2 to be representative of a larger family of independent effector-binding proteins associated with lateral gene transfer within Vibrio and closely-related species. We propose that the Cass2 family not only has capacity to form functional transcription regulator complexes, but represents possible evolutionary precursors to multi-domain regulators associated with cationic drug compounds.National Health and Medical Research Council (Australia) (NHMRC grant 488502)National Institutes of Health (U.S.) (Grant GM62414-0 )Ontario. Ministry of Revenue (Challenge Fund

    Synthetic biology to access and expand nature's chemical diversity

    Get PDF
    Bacterial genomes encode the biosynthetic potential to produce hundreds of thousands of complex molecules with diverse applications, from medicine to agriculture and materials. Accessing these natural products promises to reinvigorate drug discovery pipelines and provide novel routes to synthesize complex chemicals. The pathways leading to the production of these molecules often comprise dozens of genes spanning large areas of the genome and are controlled by complex regulatory networks with some of the most interesting molecules being produced by non-model organisms. In this Review, we discuss how advances in synthetic biology β€” including novel DNA construction technologies, the use of genetic parts for the precise control of expression and for synthetic regulatory circuits β€” and multiplexed genome engineering can be used to optimize the design and synthesis of pathways that produce natural products

    The Binding of Triclosan to SmeT, the Repressor of the Multidrug Efflux Pump SmeDEF, Induces Antibiotic Resistance in Stenotrophomonas maltophilia

    Get PDF
    The wide utilization of biocides poses a concern on the impact of these compounds on natural bacterial populations. Furthermore, it has been demonstrated that biocides can select, at least in laboratory experiments, antibiotic resistant bacteria. This situation has raised concerns, not just on scientists and clinicians, but also on regulatory agencies, which are demanding studies on the impact that the utilization of biocides may have on the development on resistance and consequently on the treatment of infectious diseases and on human health. In the present article, we explored the possibility that the widely used biocide triclosan might induce antibiotic resistance using as a model the opportunistic pathogen Stenotrophomonas maltophilia. Biochemical, functional and structural studies were performed, focusing on SmeDEF, the most relevant antibiotic- and triclosan-removing multidrug efflux pump of S. maltophilia. Expression of smeDEF is regulated by the repressor SmeT. Triclosan released SmeT from its operator and induces the expression of smeDEF, thus reducing the susceptibility of S. maltophilia to antibiotics in the presence of the biocide. The structure of SmeT bound to triclosan is described. Two molecules of triclosan were found to bind to one subunit of the SmeT homodimer. The binding of the biocide stabilizes the N terminal domain of both subunits in a conformation unable to bind DNA. To our knowledge this is the first crystal structure obtained for a transcriptional regulator bound to triclosan. This work provides the molecular basis for understanding the mechanisms allowing the induction of phenotypic resistance to antibiotics by triclosan

    An RND-Type Efflux System in Borrelia burgdorferi Is Involved in Virulence and Resistance to Antimicrobial Compounds

    Get PDF
    Borrelia burgdorferi is remarkable for its ability to thrive in widely different environments due to its ability to infect various organisms. In comparison to enteric Gram-negative bacteria, these spirochetes have only a few transmembrane proteins some of which are thought to play a role in solute and nutrient uptake and excretion of toxic substances. Here, we have identified an outer membrane protein, BesC, which is part of a putative export system comprising the components BesA, BesB and BesC. We show that BesC, a TolC homolog, forms channels in planar lipid bilayers and is involved in antibiotic resistance. A besC knockout was unable to establish infection in mice, signifying the importance of this outer membrane channel in the mammalian host. The biophysical properties of BesC could be explained by a model based on the channel-tunnel structure. We have also generated a structural model of the efflux apparatus showing the putative spatial orientation of BesC with respect to the AcrAB homologs BesAB. We believe that our findings will be helpful in unraveling the pathogenic mechanisms of borreliae as well as in developing novel therapeutic agents aiming to block the function of this secretion apparatus
    • …
    corecore