680 research outputs found

    Geophysical Research

    Get PDF
    Contains reports on two research projects.Joint Services Electronics Programs (U. S. Army, U. S. Navy, and U. S. Air Force) under Contract DA 28-043-AMC-02536(E)National Aeronautics and Space Administration (Grant NGR-22-009-131)National Aeronautics and Space Administration (Grant NGR-22-009-114)National Aeronautics and Space Administration (Contract NAS 12-436

    Remote terminal system evaluation

    Get PDF
    An Earth Resources Data Processing System was developed to evaluate the system for training, technology transfer, and data processing. In addition to the five sites included in this project two other sites were connected to the system under separate agreements. The experience of these two sites is discussed. The results of the remote terminal project are documented in seven reports: one from each of the five project sites, Purdue University, and an overview report summarizing the other six reports

    The mass of odd-odd nuclei in microscopic mass models

    Full text link
    Accurate estimates of the binding energy of nuclei far from stability that cannot be produced in the laboratory are crucial to our understanding of nuclear processes in astrophysical scenarios. Models based on energy density functionals have shown that they are capable of reproducing all known masses with root-mean-square error better than 800 keV, while retaining a firm microscopic foundation. However, it was recently pointed out in [M. Hukkanen et al., arXiv:2210.10674] that the recent BSkG1 model fails to account for a contribution to the binding energy that is specific to odd-odd nuclei, and which can be studied by using appropriate mass difference formulas. We analyse here the (lacking) performance of three recent microscopic mass models with respect to such formulas and examine possibilities to remedy this deficiency in the future.Comment: 6 pages, 2 figures; Contribution to the proceedings of INPC 2022, Cape Town, South Afric

    Ru catalysts for levulinic acid hydrogenation with formic acid as a hydrogen source

    Get PDF
    International audienceThe catalytic hydrogenation of levulinic acid (LA) with formic acid (FA) as a hydrogen source into [gamma]-valerolactone (GVL) is considered as one of the crucial sustainable processes in today's biorefinery schemes. In the current work, we investigated the modification of Ru/C as efficient catalysts for both formic acid decomposition and levulinic acid hydrogenation in comparison with Pd and Pt catalysts. In order to better understand what features are responsible for high catalytic performance, we combined experimental tests, DFT calculations together with extensive material characterization. In LA hydrogenation with FA as a hydrogen source, the intermediate surface formate inhibits at least partially the LA hydrogenation. In addition, the FA decomposition is highly sensitive to the kind of the preparation method of the Ru/C catalyst: (i) the process looks structure sensitive favored on larger particles and (ii) residual chlorine decreases significantly the FA decomposition rate

    Everything Hits at Once: How Remote Rainfall Matters for the Prediction of the 2021 North American Heat Wave

    Get PDF
    In June 2021, Western North America experienced an intense heat wave with unprecedented temperatures and far-reaching socio-economic consequences. Anomalous rainfall in the West Pacific triggers a cascade of weather events across the Pacific, which build up a high-amplitude ridge over Canada and ultimately lead to the heat wave. We show that the response of the jet stream to diabatically enhanced ascending motion in extratropical cyclones represents a predictability barrier with regard to the heat wave magnitude. Therefore, probabilistic weather forecasts are only able to predict the extremity of the heat wave once the complex cascade of weather events is captured. Our results highlight the key role of the sequence of individual weather events in limiting the predictability of this extreme event. We therefore conclude that it is not sufficient to consider such rare events in isolation but it is essential to account for the whole cascade over different spatiotemporal scales

    Similarity and variability of blocked weather-regime dynamics in the Atlantic–European region

    Get PDF
    Weather regimes govern an important part of the sub-seasonal variability of the mid-latitude circulation. Due to their role in weather extremes and atmospheric predictability, regimes that feature a blocking anticyclone are of particular interest. This study investigates the dynamics of these “blocked” regimes in the North Atlantic–European region from a year-round perspective. For a comprehensive diagnostic, wave activity concepts and a piecewise potential vorticity (PV) tendency framework are combined. The latter essentially quantifies the well-established PV perspective of mid-latitude dynamics. The four blocked regimes (namely Atlantic ridge, European blocking, Scandinavian blocking, and Greenland blocking) during the 1979–2021 period of ERA5 reanalysis are considered. Wave activity characteristics exhibit distinct differences between blocked regimes. After regime onset, Greenland blocking is associated with a suppression of wave activity flux, whereas Atlantic ridge and European blocking are associated with a northward deflection of the flux without a clear net change. During onset, the envelope of Rossby wave activity retracts upstream for Greenland blocking, whereas the envelope extends downstream for Atlantic ridge and European blocking. Scandinavian blocking exhibits intermediate wave activity characteristics. From the perspective of piecewise PV tendencies projected onto the respective regime pattern, the dynamics that govern regime onset exhibit a large degree of similarity: linear Rossby wave dynamics and nonlinear eddy PV fluxes dominate and are of approximately equal relative importance, whereas baroclinic coupling and divergent amplification make minor contributions. Most strikingly, all blocked regimes exhibit very similar (intra-regime) variability: a retrograde and an upstream pathway to regime onset. The retrograde pathway is dominated by nonlinear PV eddy fluxes, whereas the upstream pathway is dominated by linear Rossby wave dynamics. Importantly, there is a large degree of cancellation between the two pathways for some of the mechanisms before regime onset. The physical meaning of a regime-mean perspective before onset can thus be severely limited. Implications of our results for understanding predictability of blocked regimes are discussed. Further discussed are the limitations of projected tendencies in capturing the importance of moist-baroclinic growth, which tends to occur in regions where the amplitude of the regime pattern, and thus the projection onto it, is small. Finally, it is stressed that this study investigates the variability of the governing dynamics without prior empirical stratification of data by season or by type of regime transition. It is demonstrated, however, that our dynamics-centered approach does not merely reflect variability that is associated with these factors. The main modes of dynamical variability revealed herein and the large similarity of the blocked regimes in exhibiting this variability are thus significant results.</p

    Warm conveyor belt activity over the Pacific: modulation by the Madden–Julian Oscillation and impact on tropical–extratropical teleconnections

    Get PDF
    Research in the last few decades has revealed that rapidly ascending airstreams in extratropical cyclones – so-called warm conveyor belts (WCBs) – play an important role in extratropical atmospheric dynamics. However on the subseasonal timescale, the modulation of their occurrence frequency, henceforth referred to as WCB activity, has so far received little attention. Also, it is not yet clear whether WCB activity may affect tropospheric teleconnection patterns, which constitute a source of predictability on this subseasonal timescale. Using reanalysis data, this study analyzes the modulation of WCB activity by the Madden–Julian Oscillation (MJO). A key finding is that WCB activity increases significantly over the western North Pacific when the convection of the MJO is located over the Indian Ocean. This increased WCB activity, which is stronger during La Niña conditions, is related to enhanced poleward moisture fluxes driven by the circulation of subtropical Rossby gyres associated with the MJO. In contrast, when the convection of the MJO is located over the western North Pacific, WCB activity increases significantly over the eastern North Pacific. This increase stems from a southward shift and eastward extension of the North Pacific jet stream. However, while these mean increases are significant, individual MJO events exhibit substantial variability, with some events even exhibiting anomalously low WCB activity. Individual events of the same MJO phase with anomalously low WCB activity over the North Pacific tend to be followed by the known canonical teleconnection patterns in the Atlantic–European region; i.e., the occurrence frequency of the positive phase of the North Atlantic Oscillation (NAO) is enhanced when convection of the MJO is located over the Indian Ocean and similarly for the negative phase of the NAO when MJO convection is over the western North Pacific. However, the canonical teleconnection patterns are modified when individual events of the same MJO phase are accompanied by anomalously high WCB activity over the North Pacific. In particular, the link between MJO and the negative phase of the NAO weakens considerably. Reanalysis data and experiments with an idealized general circulation model reveal that this is related to anomalous ridge building over western North America favored by enhanced WCB activity. Overall, our study highlights the potential role of WCBs in shaping tropical–extratropical teleconnection patterns and underlines the importance of representing them adequately in numerical weather prediction models in order to fully exploit the sources of predictability emerging from the tropics.</p
    • 

    corecore