95 research outputs found

    Exponentially Modified QCD Coupling

    Full text link
    We present a specific class of models for an infrared-finite analytic QCD coupling, such that at large space-like energy scales the coupling differs from the perturbative one by less than any inverse power of the energy scale. This condition is motivated by the ITEP Operator Product Expansion philosophy. Allowed by the ambiguity in the analytization of the perturbative coupling, the proposed class of couplings has three parameters. In the intermediate energy region, the proposed coupling has low loop-level and renormalization scheme dependence. The present modification of perturbative QCD must be considered as a phenomenological attempt, with the aim of enlarging the applicability range of the theory of the strong interactions at low energies.Comment: two references adde

    The massless two-loop two-point function

    Full text link
    We consider the massless two-loop two-point function with arbitrary powers of the propagators and derive a representation, from which we can obtain the Laurent expansion to any desired order in the dimensional regularization parameter eps. As a side product, we show that in the Laurent expansion of the two-loop integral only rational numbers and multiple zeta values occur. Our method of calculation obtains the two-loop integral as a convolution product of two primitive one-loop integrals. We comment on the generalization of this product structure to higher loop integrals.Comment: 22 pages, revised version, eq. 9, 10 and 53 correcte

    Neutrino Mixing Predictions of a Minimal SO(10) Model with Suppressed Proton Decay

    Get PDF
    During the past year, a minimal renormalizable supersymmetric SO(10) model has been proposed with the following properties: it predicts a naturally stable dark matter and neutrino mixing angles theta_atm and theta_13 while at the same time accommodating CKM CP violation among quarks with no SUSY CP problem. Suppression of proton decay for all allowed values of tan beta strongly restricts the flavor structure of the model making it predictive for other processes as well. We discuss the following predictions of the model in this paper, e.g. down-type quark masses, and neutrino oscillation parameters, U_e3, delta_MNSP, which will be tested by long baseline experiments such as T2K and subsequent experiments using the neutrino beam from JPARC. We also calculate lepton flavor violation and the lepton asymmetry of the Universe in this model.Comment: 22 pages, 11 figure

    SUSY dark matter and lepton flavor violation

    Full text link
    We study lepton flavor-violating (LFV) processes within a supersymmetric type-I seesaw framework with flavor-blind universal boundary conditions, properly accounting for the effect of the neutrino sector on the dark matter relic abundance. We consider several possibilities for the neutrino Yukawa coupling matrix and show that in regions of SUSY parameter space that yield the correct neutralino relic density, LFV rates can differ from naive estimates by up to two orders of magnitude. Contrary to common belief, we find that current LFV limits do not exclude neutrino Yukawa couplings larger than top Yukawa couplings. We introduce the ISAJET-M program that was used for the computations.Comment: 37 pages, 9 figures, 6 tables. Version to appear in PR

    Generalization of the BLM procedure and its scales in any order of pQCD

    Full text link
    The Brodsky--Lepage--Mackenzie procedure is sequentially and unambiguously extended to any fixed order of perturbative QCD beyond the so called ``large--\beta_0 approximation''. As a result of this procedure, the obtained perturbation series looks like a continued-fraction representation. A subsequent generalization of this procedure is developed, in order to optimize the convergence of the final series, along the lines of the Fastest Convergence Prescription. This generalized BLM procedure is applied to the Adler D function and also to R_{e^+e^-} in QCD at N3^3LO. A further extension of the sequential BLM is presented which makes use of additional parameters to optimize the convergence of the power-series at any fixed order of expansion.Comment: 24 pages, JHEP3, 4 figures are enclosed as eps-file, final version to be published in JHE

    Decays of Scalar and Pseudoscalar Higgs Bosons into Fermions: Two-loop QCD Corrections to the Higgs-Quark-Antiquark Amplitude

    Full text link
    As a first step in the aim of arriving at a differential description of neutral Higgs boson decays into heavy quarks, h→QQˉXh \to Q {\bar Q}X, to second order in the QCD coupling αS\alpha_S, we have computed the hQQˉhQ{\bar Q} amplitude at the two-loop level in QCD for a general neutral Higgs boson which has both scalar and pseudoscalar couplings to quarks. This amplitude is given in terms of a scalar and a pseudoscalar vertex form factor, for which we present closed analytic expressions in terms of one-dimensional harmonic polylogarithms of maximum weight 4. The results hold for arbitrary four-momentum squared, q2q^2, of the Higgs boson and of the heavy quark mass, mm. Moreover we derive the approximate expressions of these form factors near threshold and in the asymptotic regime m2/q2≪1m^2/q^2 \ll 1.Comment: 56 pages, 2 figure

    New Uncertainties in QCD-QED Rescaling Factors using Quadrature Method

    Full text link
    In this paper we briefly outline the quadrature method for estimating uncertainties in a function of several variables and apply it to estimate the numerical uncertainties in QCD-QED rescaling factors. We employ here the one-loop order in QED and three-loop order in QCD evolution equations of fermion mass renormalization. Our present calculations are found to be new and also reliable compared to the earlier values employed by various authors.Comment: 14 page

    Supersymmetric Higgs Yukawa Couplings to Bottom Quarks at next-to-next-to-leading Order

    Full text link
    The effective bottom Yukawa couplings are analyzed for the minimal supersymmetric extension of the Standard Model at two-loop accuracy within SUSY-QCD. They include the resummation of the dominant corrections for large values of tg(beta). In particular the two-loop SUSY-QCD corrections to the leading SUSY-QCD and top-induced SUSY-electroweak contributions are addressed. The residual theoretical uncertainties range at the per-cent level.Comment: 25 pages, 9 figures, added comments and references, typos corrected, results unchanged, published versio

    Wilson Expansion of QCD Propagators at Three Loops: Operators of Dimension Two and Three

    Full text link
    In this paper we construct the Wilson short distance operator product expansion for the gluon, quark and ghost propagators in QCD, including operators of dimension two and three, namely, A^2, m^2, m A^2, \ovl{\psi} \psi and m^3. We compute analytically the coefficient functions of these operators at three loops for all three propagators in the general covariant gauge. Our results, taken in the Landau gauge, should help to improve the accuracy of extracting the vacuum expectation values of these operators from lattice simulation of the QCD propagators.Comment: 20 pages, no figure

    Standard Model Higgs-Boson Branching Ratios with Uncertainties

    Get PDF
    We present an update of the branching ratios for Higgs-boson decays in the Standard Model. We list results for all relevant branching ratios together with corresponding uncertainties resulting from input parameters and missing higher-order corrections. As sources of parametric uncertainties we include the masses of the charm, bottom, and top quarks as well as the QCD coupling constant. We compare our results with other predictions in the literature.Comment: 32 pages, 4 figures, contribution to LHC Higgs Cross Section Working Group https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CrossSections, theoretical uncertainties for H->\mu\mu{} added, version to appear in European Physical Journal
    • …
    corecore