122 research outputs found

    Asciminib mitigates DNA damage stress signaling induced by cyclophosphamide in the ovary

    Get PDF
    Cancer treatments often have adverse effects on the quality of life for young women. One of the most relevant negative impacts is the loss of fertility. Cyclophosphamide is one of the most detrimental chemotherapeutic drugs for the ovary. Cyclophosphamide may induce the destruction of dormant follicles while promoting follicle activation and growth. Herein, we demonstrate the in vivo protective effect of the allosteric Bcr-Abl tyrosine kinase inhibitor Asciminib on signalling pathways activated by cyclophosphamide in mouse ovaries. Besides, we provide evidence that Asciminib did not interfere with the cytotoxic effect of cyclophosphamide in MCF7 breast cancer cells. Our data indicate that concomitant administration of Asciminib mitigates the cyclophosphamide-induced ovarian reserve loss without preventing the anticancer potential of cyclophosphamide. Altogether these observations are relevant for the development of effective ferto-protective adjuvants to preserve the ovarian reserve from the damaging effect of cancer therapies

    Cisplatin and Doxorubicin Induce Distinct Mechanisms of Ovarian Follicle Loss; Imatinib Provides Selective Protection Only against Cisplatin

    Get PDF
    Chemotherapy treatment in premenopausal women has been linked to ovarian follicle loss and premature ovarian failure; the exact mechanism by which this occurs is uncertain. Here, two commonly used chemotherapeutic agents (cisplatin and doxorubicin) were added to a mouse ovary culture system, to compare the sequence of events that leads to germ cell loss. The ability of imatinib mesylate to protect the ovary against cisplatin or doxorubicin-induced ovarian damage was also examined.Newborn mouse ovaries were cultured for a total of six days, exposed to a chemotherapeutic agent on the second day: this allowed for the examination of the earliest stages of follicle development. Cleaved PARP and TUNEL were used to assess apoptosis following drug treatment. Imatinib was added to cultures with cisplatin and doxorubicin to determine any protective effect.Histological analysis of ovaries treated with cisplatin showed oocyte-specific damage; in comparison doxorubicin preferentially caused damage to the granulosa cells. Cleaved PARP expression significantly increased for cisplatin (16 fold, p<0.001) and doxorubicin (3 fold, p<0.01). TUNEL staining gave little evidence of primordial follicle damage with either drug. Imatinib had a significant protective effect against cisplatin-induced follicle damage (p<0.01) but not against doxorubicin treatment.Cisplatin and doxorubicin both induced ovarian damage, but in a markedly different pattern, with imatinib protecting the ovary against damage by cisplatin but not doxorubicin. Any treatment designed to block the effects of chemotherapeutic agents on the ovary may need to be specific to the drug(s) the patient is exposed to

    c-Abl downregulates the slow phase of double-strand break repair

    Get PDF
    c-Abl tyrosine kinase is activated by agents that induce double-strand DNA breaks (DSBs) and interacts with key components of the DNA damage response and of the DSB repair machinery. However, the functional significance of c-Abl in these processes, remained unclear. In this study, we demonstrate, using comet assay and pulsed-field gel electrophoresis, that c-Abl inhibited the repair of DSBs induced by ionizing radiation, particularly during the second and slow phase of DSB repair. Pharmacological inhibition of c-Abl and c-Abl depletion by siRNA-mediated knockdown resulted in higher DSB rejoining. c-Abl null MEFs exhibited higher DSB rejoining compared with cells reconstituted for c-Abl expression. Abrogation of c-Abl kinase activation resulted in higher H2AX phosphorylation levels and higher numbers of post-irradiation γH2AX foci, consistent with a role of c-Abl in DSB repair regulation. In conjunction with these findings, transient abrogation of c-Abl activity resulted in increased cellular radioresistance. Our findings suggest a novel function for c-Abl in inhibition of the slow phase of DSB repair

    c-Abl phosphorylation of ΔNp63α is critical for cell viability

    Get PDF
    The p53 family member p63 has been shown to be critical for growth, proliferation and chemosensitivity. Here we demonstrate that the c-Abl tyrosine kinase phosphorylates the widely expressed ΔNp63α isoform and identify multiple sites by mass spectrometry in vitro and in vivo. Phopshorylation by c-Abl results in greater protein stability of both ectopically expressed and endogenous ΔNp63α. c-Abl phosphorylation of ΔNp63α induces its binding to Yes-associated protein (YAP) and silencing of YAP by siRNA reduces the c-Abl-induced increase of ΔNp63α levels. We further show that cisplatin induces c-Abl phosphorylation of ΔNp63α and its binding to YAP. Overexpression of ΔNp63α, but not the c-Abl phosphosites mutant, protects cells from cisplatin treatment. Finally, we demonstrate the rescue of p63 siRNA-mediated loss of viability with p63siRNA insensitive construct of ΔNp63α but not the phosphosites mutant. These results demonstrate that c-Abl phosphorylation of ΔNp63α regulates its protein stability, by inducing binding of YAP, and is critical for cell viability

    JAK2 V617F Constitutive Activation Requires JH2 Residue F595: A Pseudokinase Domain Target for Specific Inhibitors

    Get PDF
    The JAK2 V617F mutation present in over 95% of Polycythemia Vera patients and in 50% of Essential Thrombocythemia and Primary Myelofibrosis patients renders the kinase constitutively active. In the absence of a three-dimensional structure for the full-length protein, the mechanism of activation of JAK2 V617F has remained elusive. In this study, we used functional mutagenesis to investigate the involvement of the JH2 αC helix in the constitutive activation of JAK2 V617F. We show that residue F595, located in the middle of the αC helix of JH2, is indispensable for the constitutive activity of JAK2 V617F. Mutation of F595 to Ala, Lys, Val or Ile significantly decreases the constitutive activity of JAK2 V617F, but F595W and F595Y are able to restore it, implying an aromaticity requirement at position 595. Substitution of F595 to Ala was also able to decrease the constitutive activity of two other JAK2 mutants, T875N and R683G, as well as JAK2 K539L, albeit to a lower extent. In contrast, the F595 mutants are activated by erythropoietin-bound EpoR. We also explored the relationship between the dimeric conformation of EpoR and several JAK2 mutants. Since residue F595 is crucial to the constitutive activation of JAK2 V617F but not to initiation of JAK2 activation by cytokines, we suggest that small molecules that target the region around this residue might specifically block oncogenic JAK2 and spare JAK2 wild-type

    LH prevents cisplatin-induced apoptosis in oocytes and preserves female fertility in mouse

    Get PDF
    Premature ovarian failure and female infertility are frequent side effects of anticancer therapies, owing to the extreme sensitivity of the ovarian reserve oocytes to the damaging effects of irradiation and chemotherapy on DNA. We report here a robust protective effect of luteinizing hormone (LH) on the primordial follicle pool of prepubertal ovaries against the cisplatin (Cs)-induced apoptosis. In vitro LH treatment of prepubertal ovarian fragments generated anti-apoptotic signals by a subset of ovarian somatic cells expressing LH receptor (LHR) through cAMP/PKA and Akt pathways. Such signals, reducing the oocyte level of pro-apoptotic TAp63 protein and favoring the repair of the Cs-damaged DNA in the oocytes, prevented their apoptosis. Noteworthy, in vivo administration to prepubertal female mice of a single dose of LH together with Cs inhibited the depletion of the primordial follicle reserve caused by the drug and preserved their fertility in reproductive age, preventing significant alteration in the number of pregnancy and of delivered pups. In conclusion, these findings establish a novel ovoprotective role for LH and further support the very attracting prospective to use physiological 'fertoprotective' approaches for preventing premature infertility and risks linked to precocious menopause in young patients who survived cancer after chemotherapy

    Co-Conserved Features Associated with cis Regulation of ErbB Tyrosine Kinases

    Get PDF
    BACKGROUND: The epidermal growth factor receptor kinases, or ErbB kinases, belong to a large sub-group of receptor tyrosine kinases (RTKs), which share a conserved catalytic core. The catalytic core of ErbB kinases have functionally diverged from other RTKs in that they are activated by a unique allosteric mechanism that involves specific interactions between the kinase core and the flanking Juxtamembrane (JM) and COOH-terminal tail (C-terminal tail). Although extensive studies on ErbB and related tyrosine kinases have provided important insights into the structural basis for ErbB kinase functional divergence, the sequence features that contribute to the unique regulation of ErbB kinases have not been systematically explored. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we use a Bayesian approach to identify the selective sequence constraints that most distinguish ErbB kinases from other receptor tyrosine kinases. We find that strong ErbB kinase-specific constraints are imposed on residues that tether the JM and C-terminal tail to key functional regions of the kinase core. A conserved RIxKExE motif in the JM-kinase linker region and a glutamine in the inter-lobe linker are identified as two of the most distinguishing features of the ErbB family. While the RIxKExE motif tethers the C-terminal tail to the N-lobe of the kinase domain, the glutamine tethers the C-terminal tail to hinge regions critical for inter-lobe movement. Comparison of the active and inactive crystal structures of ErbB kinases indicates that the identified residues are conformationally malleable and can potentially contribute to the cis regulation of the kinase core by the JM and C-terminal tail. ErbB3, and EGFR orthologs in sponges and parasitic worms, diverge from some of the canonical ErbB features, providing insights into sub-family and lineage-specific functional specialization. CONCLUSION/SIGNIFICANCE: Our analysis pinpoints key residues for mutational analysis, and provides new clues to cancer mutations that alter the canonical modes of ErbB kinase regulation

    DNA damage stress response in germ cells: role of c-Abl and clinical implications

    No full text
    Cells experiencing DNA damage undergo a complex response entailing cell-cycle arrest, DNA repair and apoptosis, the relative importance of the three being modulated by the extent of the lesion. The observation that Abl interacts in the nucleus with several proteins involved in different aspects of DNA repair has led to the hypothesis that this kinase is part of the damage-sensing mechanism. However, the mechanistic details underlying the role of Abl in DNA repair remain unclear. Here, I will review the evidence supporting our current understanding of Abl activation following DNA insults, while focusing on the relevance of these mechanisms in protecting DNA-injured germ cells. Early studies have shown that Abl transcripts are highly expressed in the germ line. Abl-deficient mice exhibit multiple abnormalities, increased perinatal mortality and reduced fertility. Recent findings have implicated Abl in a cisplatin-induced signaling pathway eliciting death of immature oocytes. A p53-related protein, TAp63, is an important immediate downstream effector of this pathway. Of note, pharmacological inhibition of Abl protects the ovarian reserve from the toxic effects of cisplatin. This suggests that the extent of Abl catalytic outputs may shift the balance between survival (likely through DNA repair) and activation of a death response. Taken together, these observations are consistent with the evolutionary conserved relationship between DNA damage and activation of the p53 family of transcription factors, while shedding light on the key role of Abl in dictating the fate of germ cells upon genotoxic insults
    • …
    corecore