416 research outputs found

    Asteroseismology of Massive Stars : Some Words of Caution

    Full text link
    Although playing a key role in the understanding of the supernova phenomenon, the evolution of massive stars still suffers from uncertainties in their structure, even during their "quiet" main sequence phase and later on during their subgiant and helium burning phases. What is the extent of the mixed central region? In the local mixing length theory (LMLT) frame, are there structural differences using Schwarzschild or Ledoux convection criterion? Where are located the convective zone boundaries? Are there intermediate convection zones during MS and post-MS phase, and what is their extent and location? We discuss these points and show how asteroseismology could bring some light on these questions.Comment: 10 pages, 5 figures, IAU Symposium 307, New windows on massive stars: asteroseismology, interferometry, and spectropolarimetry, G. Meynet, C. Georgy, J.H. Groh & Ph. Stee, ed

    Electrical Noise From Phase Separation In Pr2/3Ca1/3MnO3 Single Crystal

    Full text link
    Low frequency electrical noise measurements have been used to probe the electronic state of the perovskite-type manganese oxide Pr2/3Ca1/3MnO3 versus temperature and in the vicinity of the field-induced transition from the insulating, charge-ordered state (I-CO) to the metallic, ferromagnetic state (M-F). At high temperature we have observed a high level of the excess noise with mainly a gaussian distribution of the resistance fluctuations, and the associated power spectral density has a standard 1/f dependence. However, in the hysteretic region, where the electrical resistance depends dramatically on the sample history, we have observed a huge non-gaussian noise characterized by two level fluctuator-like switching (TLS) in the time domain. We discuss the origin of the noise in terms of percolative behavior of the conductivity. We speculate that the dominant fluctuators are manganese clusters switching between the M-F and the I-CO phases.Comment: RevTeX, 6 pages with 3 figure

    Apsidal motion in the massive binary HD152218

    Full text link
    Massive binary systems are important laboratories in which to probe the properties of massive stars and stellar physics in general. In this context, we analysed optical spectroscopy and photometry of the eccentric short-period early-type binary HD 152218 in the young open cluster NGC 6231. We reconstructed the spectra of the individual stars using a separating code. The individual spectra were then compared with synthetic spectra obtained with the CMFGEN model atmosphere code. We furthermore analysed the light curve of the binary and used it to constrain the orbital inclination and to derive absolute masses of 19.8 +/- 1.5 and 15.0 +/- 1.1 solar masses. Combining radial velocity measurements from over 60 years, we show that the system displays apsidal motion at a rate of (2.04^{+.23}_{-.24}) degree/year. Solving the Clairaut-Radau equation, we used stellar evolution models, obtained with the CLES code, to compute the internal structure constants and to evaluate the theoretically predicted rate of apsidal motion as a function of stellar age and primary mass. In this way, we determine an age of 5.8 +/- 0.6 Myr for HD 152218, which is towards the higher end of, but compatible with, the range of ages of the massive star population of NGC 6231 as determined from isochrone fitting.Comment: Accepted for publication in Astronomy & Astrophysic

    Lattice and spin excitations in multiferroic h-YMnO3

    Full text link
    We used Raman and terahertz spectroscopies to investigate lattice and magnetic excitations and their cross-coupling in the hexagonal YMnO3 multiferroic. Two phonon modes are strongly affected by the magnetic order. Magnon excitations have been identified thanks to comparison with neutron measurements and spin wave calculations but no electromagnon has been observed. In addition, we evidenced two additional Raman active peaks. We have compared this observation with the anti-crossing between magnon and acoustic phonon branches measured by neutron. These optical measurements underly the unusual strong spin-phonon coupling

    Unusual Ground State Properties of the Kondo-Lattice Compound Yb2Ir3Ge5

    Full text link
    We report sample preparation, structure, electrical resistivity, magnetic susceptibility and heat capacity studies of a new compound Yb2_2Ir3_3Ge5_5. We find that this compound crystallizes in an orthorhombic structure with a space group PMMN unlike the compound Ce2_2Ir3_3Ge5_5 which crystallizes in the tetragonal IBAM (U2_2Co3_3Si5_5 type) structure. Our resistivity measurements indicate that the compound Yb2_2Ir3_3Ge5_5 behaves like a typical Kondo lattice system with no ordering down to 0.4 K. However, a Curie-Weiss fit of the inverse magnetic susceptibility above 100 K gives an effective moment of only 3.66 μ\muB_B which is considerably less than the theoretical value of 4.54 μ\muB_B for magnetic Yb3+^3+ ions. The value of θP\theta_{P} = -15.19 K is also considerably higher indicating the presence of strong hybridization. An upturn in the low temperature heat capacity gives an indication that the system may order magnetically just below the lowest temperature of our heat capacity measurements (0.4 K). The structure contains two sites for Yb ions and the present investigation suggests that Yb may be trivalent in one site while it may be significantly lower (close to divalent) in the other.Comment: 9 pages, 4 figures. submitted to Phys. Rev.

    Magnetic Ordering and Superconductivity in the RE2_2Ir3_3Ge5_5 (RE = Y, La-Tm, Lu) System

    Full text link
    We find that the compounds for RE = Y, La-Dy, crystallize in the tetragonal Ibam (U2_2Co3_3Si5_5 type) structure whereas the compounds for RE = Er-Lu, crystallize in a new orthorhombic structure with a space group Pmmn. Samples of Ho2_2Ir3_3Ge5_5 were always found to be multiphase. The compounds for RE = Y to Dy which adopt the Ibam type structure show a metallic resistivity whereas the compounds with RE = Er, Tm and Lu show an anomalous behavior in the resistivity with a semiconducting increase in ρ\rho as we go down in temperature from 300K. Interestingly we had earlier found a positive temperature coefficient of resistivity for the Yb sample in the same temperature range. We will compare this behavior with similar observations in the compounds RE3_3Ru4_4Ge13_{13} and REBiPt. La2_2Ir3_3Ge5_5 and Y2_2Ir3_3Ge5_5 show bulk superconductivity below 1.8K and 2.5K respectively. Our results confirm that Ce2_2Ir3_3Ge5_5 shows a Kondo lattice behavior and undergoes antiferromagnetic ordering below 8.5K. Most of the other compounds containing magnetic rare-earth elements undergo a single antiferromagnetic transition at low temperatures (T\leq12K) while Gd2_2Ir3_3Ge5_5, Dy2_2Ir3_3Ge5_5 and Nd2_2Ir3_3Ge5_5 show multiple transitions. The TN_N's for most of the compounds roughly scale with the de Gennes factor. which suggests that the chief mechanism of interaction leading to the magnetic ordering of the magnetic moments may be the RKKY interaction.Comment: 25 pages, 16 figure

    The IACOB project. IV. New predictions for high-degree non-radial mode instability domains in massive stars and their connection with macroturbulent broadening

    Full text link
    Context. Asteroseismology is a powerful tool to access the internal structure of stars. Apart from the important impact of theoretical developments, progress in this field has been commonly associated with the analysis of time-resolved observations. Recently, the so-called macroturbulent broadening has been proposed as a complementary and less expensive way - in terms of observational time - to investigate pulsations in massive stars. Aims: We assess to what extent this ubiquitous non-rotational broadening component which shapes the line profiles of O stars and B supergiants is a spectroscopic signature of pulsation modes driven by a heat mechanism. Methods: We compute stellar main-sequence and post-main-sequence models from 3 to 70 M[SUB]⊙[/SUB] with the ATON stellar evolution code, and determine the instability domains for heat-driven modes for degrees ℓ = 1-20 using the adiabatic and non-adiabatic codes LOSC and MAD. We use the observational material compiled in the framework of the IACOB project to investigate possible correlations between the single snapshot line-broadening properties of a sample of ≈260 O and B-type stars and their location inside or outside the various predicted instability domains. Results: We present an homogeneous prediction for the non-radial instability domains of massive stars for degree ℓ up to 20. We provide a global picture of what to expect from an observational point of view in terms of the frequency range of excited modes, and we investigate the behavior of the instabilities with respect to stellar evolution and the degree of the mode. Furthermore, our pulsational stability analysis, once compared to the empirical results, indicates that stellar oscillations originated by a heat mechanism cannot explain alone the occurrence of the large non-rotational line-broadening component commonly detected in the O star and B supergiant domain. Based on observations made with the Nordic Optical Telescope, operated by NOTSA, and the Mercator Telescope, operated by the Flemish Community, both at the Observatorio del Roque de los Muchachos (La Palma, Spain) of the Instituto de Astrofísica de Canarias

    Magnetic properties of pure and Gd doped EuO probed by NMR

    Full text link
    An Eu NMR study in the ferromagnetic phase of pure and Gd doped EuO was performed. A complete description of the NMR lineshape of pure EuO allowed for the influence of doping EuO with Gd impurities to be highlighted. The presence of a temperature dependent static magnetic inhomogeneity in Gd doped EuO was demonstrated by studying the temperature dependence of the lineshapes. The results suggest that the inhomogeneity in 0.6% Gd doped EuO is linked to colossal magnetoresistance. The measurement of the spin-lattice relaxation times as a function of temperature led to the determination of the value of the exchange integral J as a function of Gd doping. It was found that J is temperature independent and spatially homogeneous for all the samples and that its value increases abruptly with increasing Gd doping.Comment: 14 pages, 10 figures, to be published in Physical Review

    CLES, Code Liegeois d'Evolution Stellaire

    Full text link
    Cles is an evolution code recently developed to produce stellar models meeting the specific requirements of studies in asteroseismology. It offers the users a lot of choices in the input physics they want in their models and its versatility allows them to tailor the code to their needs and implement easily new features. We describe the features implemented in the current version of the code and the techniques used to solve the equations of stellar structure and evolution. A brief account is given of the use of the program and of a solar calibration realized with it.Comment: Comments: 8 pages, Astrophys. Space Sci. CoRoT-ESTA Volume, in the pres
    corecore