328 research outputs found

    Bank Title Certification (1922)

    Get PDF
    Bank Title Certification (1922)) Title letter from Bath Trust Company in Bath, Maine issued prior to the building of the synagogue. It states that the “title to be good and free from encumbrances” and “not subject to taxation.”https://digitalcommons.usm.maine.edu/jud_povich/1059/thumbnail.jp

    Deaths from stroke in US young adults, 1989-2009.

    Get PDF
    ObjectiveTo determine what the trends in stroke mortality have been over 2 decades in young adults.MethodsIn this cohort study, we analyzed death certificate data for ischemic and hemorrhagic stroke (intracerebral hemorrhage [ICH] and subarachnoid hemorrhage [SAH]) in adults aged 20-44 in the United States for 1989 through 2009, covering approximately 2.2 billion person-years. Poisson regression was used to calculate and compare time trend data between groups and to compare trends in young adults to those in adults over age 45.ResultsMortality from stroke in young adults declined by 35% over the study period, with reductions in all 3 stroke subtypes (ischemic stroke decreased by 15%, ICH by 47%, and SAH by 50%). Black race was a risk factor for all 3 stroke subtypes (relative risk 2.4 for ischemic stroke, 4.0 for ICH, and 2.1 for SAH), but declines in all stroke subtypes were more dramatic in black compared to white participants (p < 0.001 for all stroke subtypes).ConclusionsAlthough hospitalizations for stroke in young patients have been increasing, the apparent decrease in mortality rates and in racial disparities suggests that recognition and treatment in this group may be improving

    The averted infections ratio: a novel measure of effectiveness of experimental HIV pre-exposure prophylaxis agents

    Get PDF
    Tenofovir disoproxil fumarate combined with emtricitabine is a highly effective oral pre-exposure prophylaxis (PrEP) agent for preventing the acquisition of HIV. This effectiveness has consequences for the design and analysis of trials assessing experimental PrEP regimens, which now generally include an active-control tenofovir disoproxil fumarate plus emtricitabine group, rather than a placebo group, as a comparator. Herein, we describe major problems in the interpretation of the primary measure of effectiveness proposed for these trials, namely the ratio of HIV incidence in the experimental agent group to that in the active-control group. We argue that valid interpretation requires an assumption about one of two parameters: either the incidence among trial participants had they not received PrEP or the effectiveness of tenofovir disoproxil fumarate plus emtricitabine within the trial. However, neither parameter is directly observed because of the absence of a no-treatment group, thus requiring the use of external evidence or subjective judgment. We propose an alternative measure of effectiveness based on the concept of averted infections, which incorporates one of these parameters. The measure is simple to interpret, has clinical and public health relevance, and is a natural preservation-of-effect criterion for assessing statistical non-inferiority. Its adoption could also allow the use of smaller sample sizes, currently a major barrier to the assessment of experimental PrEP regimen

    Dimension Reduction Near Periodic Orbits of Hybrid Systems

    Full text link
    When the Poincar\'{e} map associated with a periodic orbit of a hybrid dynamical system has constant-rank iterates, we demonstrate the existence of a constant-dimensional invariant subsystem near the orbit which attracts all nearby trajectories in finite time. This result shows that the long-term behavior of a hybrid model with a large number of degrees-of-freedom may be governed by a low-dimensional smooth dynamical system. The appearance of such simplified models enables the translation of analytical tools from smooth systems-such as Floquet theory-to the hybrid setting and provides a bridge between the efforts of biologists and engineers studying legged locomotion.Comment: Full version of conference paper appearing in IEEE CDC/ECC 201

    Glaciers and small ice caps in the macro-scale hydrological cycle: an assessment of present conditions and future changes

    Get PDF
    Glacier and small ice cap melt water contributions to the global hydrologic cycle are an important component of human water supply and for sea level rise. This melt water is used in many arid and semi-arid parts of the world for direct human consumption as well as indirect consumption by irrigation for crops, serving as frozen reservoirs of water that supplement runoff during warm and dry periods of summer when it is needed the most. Additionally, this melt water reaching the oceans represents a direct input to sea level rise and therefore accurate estimates of this contribution have profound economic and geopolitical implications. It has been demonstrated that, on the scale of glacierized river catchments, land surface hydrological models can successfully simulate glacier contribution to streamflow. However, at global scales, the implementation of glacier melt in hydrological models has been rudimentary or non-existent. In this study, a global glacier mass balance model is coupled with the University of New Hampshire Water Balance/Transport Model (WBM) to assess recent and projected future glacier contributions to the hydrological cycle over the global land surface (excluding the ice sheets of Greenland and Antarctica). For instance, results of WBM simulations indicate that seasonal glacier melt water in many arid climate watersheds comprises 40 % or more of their discharge. Implicitly coupled glacier and WBM models compute monthly glacier mass changes and resulting runoff at the glacier terminus for each individual glacier from the globally complete Randolph Glacier Inventory including over 200 000 glaciers. The time series of glacier runoff is aggregated over each hydrological modeling unit and delivered to the hydrological model for routing downstream and mixing with non-glacial contribution of runoff to each drainage basin outlet. WBM tracks and uses glacial and non-glacial components of the in-stream water for filling reservoirs, transfers of water between drainage basins (inter-basin hydrological transfers), and irrigation along the global system of rivers with net discharge to the ocean. Climate scenarios from global climate models prepared for IPCC AR5 are used to explore an expected range of possible future glacier outflow variability to estimate the impacts on human use of these valuable waters and their poorly understood net contribution to sea level change

    Coordination and control – limits in standard representations of multi-reservoir operations in hydrological modeling

    Get PDF
    Major multi-reservoir cascades represent a primary mechanism for dealing with hydrologic variability and extremes within institutionally complex river basins worldwide. These coordinated management processes fundamentally reshape water balance dynamics. Yet, multi-reservoir coordination processes have been largely ignored in the increasingly sophisticated representations of reservoir operations within large-scale hydrological models. The aim of this paper is twofold, namely (i) to provide evidence that the common modeling practice of parameterizing each reservoir in a cascade independently from the others is a significant approximation and (ii) to demonstrate potential unintended consequences of this independence approximation when simulating the dynamics of hydrological extremes in complex reservoir cascades. We explore these questions using the Water Balance Model, which features detailed representations of the human infrastructure coupled to the natural processes that shape water balance dynamics. It is applied to the Upper Snake River basin in the western US and its heavily regulated multi-reservoir cascade. We employ a time-varying sensitivity analysis that utilizes the method of Morris factor screening to explicitly track how the dominant release rule parameters evolve both along the cascade and in time according to seasonal high- and low-flow events. This enables us to address aim (i) by demonstrating how the progressive and cumulative dominance of upstream releases significantly dampens the ability of downstream reservoir rules\u27 parameters to influence flow conditions. We address aim (ii) by comparing simulation results with observed reservoir operations during critical low-flow and high-flow events in the basin. Our time-varying parameter sensitivity analysis with the method of Morris clarifies how independent single-reservoir parameterizations and their tacit assumption of independence leads to reservoir release behaviors that generate artificial water shortages and flooding, whereas the observed coordinated cascade operations avoided these outcomes for the same events. To further explore the role of (non-)coordination in the large deviations from the observed operations, we use an offline multi-reservoir water balance model in which adding basic coordination mechanisms drawn from the observed emergency operations is sufficient to correct the deficiencies of the independently parameterized reservoir rules from the hydrological model. These results demonstrate the importance of understanding the state–space context in which reservoir releases occur and where operational coordination plays a crucial role in avoiding or mitigating water-related extremes. Understanding how major infrastructure is coordinated and controlled in major river basins is essential for properly assessing future flood and drought hazards in a changing world

    Crude incidence in two-phase designs in the presence of competing risks.

    Get PDF
    BackgroundIn many studies, some information might not be available for the whole cohort, some covariates, or even the outcome, might be ascertained in selected subsamples. These studies are part of a broad category termed two-phase studies. Common examples include the nested case-control and the case-cohort designs. For two-phase studies, appropriate weighted survival estimates have been derived; however, no estimator of cumulative incidence accounting for competing events has been proposed. This is relevant in the presence of multiple types of events, where estimation of event type specific quantities are needed for evaluating outcome.MethodsWe develop a non parametric estimator of the cumulative incidence function of events accounting for possible competing events. It handles a general sampling design by weights derived from the sampling probabilities. The variance is derived from the influence function of the subdistribution hazard.ResultsThe proposed method shows good performance in simulations. It is applied to estimate the crude incidence of relapse in childhood acute lymphoblastic leukemia in groups defined by a genotype not available for everyone in a cohort of nearly 2000 patients, where death due to toxicity acted as a competing event. In a second example the aim was to estimate engagement in care of a cohort of HIV patients in resource limited setting, where for some patients the outcome itself was missing due to lost to follow-up. A sampling based approach was used to identify outcome in a subsample of lost patients and to obtain a valid estimate of connection to care.ConclusionsA valid estimator for cumulative incidence of events accounting for competing risks under a general sampling design from an infinite target population is derived

    WASP-4b Arrived Early for the TESS Mission

    Get PDF
    The Transiting Exoplanet Survey Satellite (TESS) recently observed 18 transits of the hot Jupiter WASP-4b. The sequence of transits occurred 81.6 ±\pm 11.7 seconds earlier than had been predicted, based on data stretching back to 2007. This is unlikely to be the result of a clock error, because TESS observations of other hot Jupiters (WASP-6b, 18b, and 46b) are compatible with a constant period, ruling out an 81.6-second offset at the 6.4σ\sigma level. The 1.3-day orbital period of WASP-4b appears to be decreasing at a rate of P˙=−12.6±1.2\dot{P} = -12.6 \pm 1.2 milliseconds per year. The apparent period change might be caused by tidal orbital decay or apsidal precession, although both interpretations have shortcomings. The gravitational influence of a third body is another possibility, though at present there is minimal evidence for such a body. Further observations are needed to confirm and understand the timing variation.Comment: AJ accepte
    • 

    corecore