62 research outputs found

    Whole genome amplification for PGD and PND; molecular and a-CGH diagnosis

    Get PDF
    Whole genome amplification amplifies the entire genome in a few hours from samples of minimal DNA quantities, even from single cells. This may have many applications, especially in prenatal diagnosis, PGD and PGS. The hypothesis for chapter 3 was: Can multiple displacement amplification (MDA) be used as a universal step prior to molecular analysis for PGD? WGA using MDA (Qiagen) was used on single cells in order to overcome the problem of limited DNA in PGD. MDA allows the diagnosis through haplotyping or a combination of direct and indirect mutation analysis. Different cell types, including buccal cells, lymphocytes, fibroblasts and blastomeres were examined. A modification on the cell lysis buffer was also tested in order to achieve more accurate results. PGD seems to benefit from MDA when multiple tests are performed for direct and indirect analysis. The modified lysis buffer (exclusion of DTT) produced better results than the other lysis buffers and buccal cells do not produce as accurate results as other cell types. The hypothesis was met as the amount of DNA produced by MDA can be used for direct and indirect testing and haplotyping. The hypothesis for chapter 4 was: Is it possible to accurately assess the chromosomes of a single cell by a-CGH? WGA was achieved by MDA and GenomePlex (Sigma) on single lymphocytes, fibroblasts and blastomeres prior to a-CGH analysis. The difficulty of this technique was the high background noise that was produced by WGA that makes interpretation difficult. Different lysis buffers, modifications of the WGA reaction and analysis software were examined for better results. A-CGH slides from different companies and institutions were used. The results showed that GenomePlex produced less background noise compared to MDA but the amplification efficiency of the technique was less reliable. The BlueGnome Cytochip arrays produced the best compared to arrays from any other companies or institutions. More experiments would be necessary to determine if the hypothesis was met as a number of chromosomal abnormalities detected were not always confirmed by other experiments. The hypothesis for chapter 5 was: Can aneuploidy be detected in coelomic fluid using a-CGH? The possibility of using WGA and a-CGH on coelomic fluid was tested as this could be used as an early form of prenatal diagnosis. Coelomic fluid was collected between the 5th and 11th week of pregnancy from women undergoing termination of pregnancy. MDA and GenomePlex were used to amplify the DNA prior to a-CGH analysis. Both genomic (high resolution) and constitutional (low resolution) arrays were tested. The results showed that aneuploidy can be detected by a-CGH. BlueGnome Cytochip slides produced the best results. A triploid sample was detected as normal. The hypothesis was met and even higher resolution could be achieved with the use of GenomePlex and BlueGnome Cytochip arrays. WGA may be very important for downstream genetic tests when the DNA is from very low quality and quantity. Further optimisation of the technique is needed in order to achieve similar results to those of good quality genomic DNA. Arrays from different companies or institutions may produce very different results. In conclusion, the results showed that WGA can benefit PGD and PND, and a-CGH gives great potential to PGS and coelomic fluid diagnosis

    Current recommendations for clinical surveillance and genetic testing in rhabdoid tumor predisposition : a report from the SIOPE Host Genome Working Group

    Get PDF
    The rhabdoid tumor (RT) predisposition syndromes 1 and 2 (RTPS1 and 2) are rare genetic conditions rendering young children vulnerable to an increased risk of RT, malignant neoplasms affecting the kidney, miscellaneous soft-part tissues, the liver and the central nervous system (Atypical Teratoid Rhabdoid Tumors, ATRT). Both, RTPS1&2 are due to pathogenic variants (PV) in genes encoding constituents of the BAF chromatin remodeling complex, i.e. SMARCB1 (RTPS1) and SMARCA4 (RTPS2). In contrast to other genetic disorders related to PVs in SMARCB1 and SMARCA4 such as Coffin-Siris Syndrome, RTPS1&2 are characterized by a predominance of truncating PVs, terminating transcription thus explaining a specific cancer risk. The penetrance of RTPS1 early in life is high and associated with a poor survival. However, few unaffected carriers may be encountered. Beyond RT, the tumor spectrum may be larger than initially suspected, and cancer surveillance offered to unaffected carriers (siblings or parents) and long-term survivors of RT is still a matter of discussion. RTPS2 exposes female carriers to an ill-defined risk of small cell carcinoma of the ovaries, hypercalcemic type (SCCOHT), which may appear in prepubertal females. RT surveillance protocols for these rare families have not been established. To address unresolved issues in the care of individuals with RTPS and to propose appropriate surveillance guidelines in childhood, the SIOPe Host Genome working group invited pediatric oncologists and geneticists to contribute to an expert meeting. The current manuscript summarizes conclusions of the panel discussion, including consented statements as well as non-evidence-based proposals for validation in the future.Peer reviewe

    Rare Variant Enrichment analysis Supports

    Get PDF
    Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome is characterized by aplasia of the female reproductive tract; the syndrome can include renal anomalies, absence or dysgenesis, and skeletal anomalies. While functional models have elucidated several candidate genes, onl

    Very High Speed Least Squares Adaptive Multichannel Filtering and System Identification

    No full text
    In this paper an arbitrarily high speed adaptive lattice algorithm for multichannel Least Squares FIR filtering and multivariable system identification, is presented. The design procedure consists of two steps. First, a channel decomposition technique is applied and the multichannel algorithm is decomposed into multiple single channel stages. Then, look-ahead techniques are applied to expand the feedback loops inherent in the adaptive lattice recursions. Look-ahead with pipeline interleaving as well as look-ahead with vectorization are used to increase the system's overall throughput rate. 1 Introduction Adaptive lattice algorithms update the so called error parameters, that is, the difference between system's output and a desired response signal, for all intermediate filter orders [1]-[2]. The number of error variables used as well as the operations needed for their time update, depends linearly on the dimension of system's parameters. The error variables are utilized for the computa..

    Don't worry about a thing … every little thing gonna be all right (except for acral lentiginous melanoma)

    No full text
    Bob Marley was a Jamaican singer, songwriter, and musician, considered one of the pioneers of reggae. In July 1977, he was diagnosed with acral lentiginous melanoma on his right great toe, which presented as a pigmented subungual lesion. Marley was advised to have his digit amputated, but he refused and opted for less invasive solutions. Unfortunately, he died at the age of 36 of metastatic disease in May 1981 after a 4-year battle with the disease. Marley has served as the posthumous poster child for skin cancer in people with skin of color for decades and has raised public awareness of this rare form of malignant melanoma. © 2020 Elsevier Inc
    corecore