55 research outputs found

    Structure-dependent optical and electrical transport properties of nanostructured Al-doped ZnO

    Full text link
    The structure-property relation of nanostructured Al-doped ZnO thin films has been investigated in detail through a systematic variation of structure and morphology, with particular emphasis on how they affect optical and electrical properties. A variety of structures, ranging from compact polycristalline films to mesoporous, hierarchically organized cluster assemblies, are grown by Pulsed Laser Deposition at room temperature at different oxygen pressures. We investigate the dependence of functional properties on structure and morphology and show how the correlation between electrical and optical properties can be studied to evaluate energy gap, conduction band effective mass and transport mechanisms. Understanding these properties opens the way for specific applications in photovoltaic devices, where optimized combinations of conductivity, transparency and light scattering are required.Comment: 8 pages, 9 figure

    Effect of annealing on mechanical properties and thermal stability of ZrCu/O nanocomposite amorphous films synthetized by pulsed laser deposition

    Get PDF
    Binary ZrCu nanocomposite amorphous films are synthetized by pulsed laser deposition (PLD) under vacuum (2 × 10−3 Pa) and 10 Pa He pressure, leading to fully amorphous compact and nanogranular morphologies, respectively. Then, post-thermal annealing treatments are carried out to explore thermal stability and crystallization phenomena together with the evolution of mechanical properties. Compact films exhibit larger thermal stability with partial crystallization phenomena starting at 420 °C, still to be completed at 550 °C, while nanogranular films exhibit early-stage crystallization at 300 °C and completed at 485 °C. The microstructural differences are related to a distinct evolution of mechanical properties and residual stress, with compact TFMGs showing the highest values of Young’s modulus (157 GPa), hardness (12 GPa), strain rate sensitivity (0.096), and local residual stress (+691 MPa) upon annealing at 550 °C, while nanogranular films reach the maximum values of mechanical properties at 485 °C followed by relaxation at higher temperatures due to complete crystallization. We show that PLD in combination with post-thermal annealing can generate different families of amorphous films with varying nanoscale morphologies, resulting in tunable mechanical properties and thermal stability, which can thus be used for designing novel film configurations for different fields of application

    SIRT1 Undergoes Alternative Splicing in a Novel Auto-Regulatory Loop with p53

    Get PDF
    Background: The NAD-dependent deacetylase SIRT1 is a nutrient-sensitive coordinator of stress-tolerance, multiple homeostatic processes and healthspan, while p53 is a stress-responsive transcription factor and our paramount tumour suppressor. Thus, SIRT1-mediated inhibition of p53 has been identified as a key node in the common biology of cancer, metabolism, development and ageing. However, precisely how SIRT1 integrates such diverse processes remains to be elucidated. Methodology/Principal Findings: Here we report that SIRT1 is alternatively spliced in mammals, generating a novel SIRT1 isoform: SIRT1-DExon8. We show that SIRT1-DExon8 is expressed widely throughout normal human and mouse tissues, suggesting evolutionary conservation and critical function. Further studies demonstrate that the SIRT1-DExon8 isoform retains minimal deacetylase activity and exhibits distinct stress sensitivity, RNA/protein stability, and protein-protein interactions compared to classical SIRT1-Full-Length (SIRT1-FL). We also identify an auto-regulatory loop whereby SIRT1-DExon8 can regulate p53, while in reciprocal p53 can influence SIRT1 splice variation. Conclusions/Significance: We characterize the first alternative isoform of SIRT1 and demonstrate its evolutionary conservation in mammalian tissues. The results also reveal a new level of inter-dependency between p53 and SIRT1, two master regulators of multiple phenomena. Thus, previously-attributed SIRT1 functions may in fact be distributed betwee

    New developments in anti-malarial target candidate and product profiles

    Full text link

    Light management in TiO2 thin films integrated with Au plasmonic nanoparticles

    Get PDF
    The light-harvesting properties of metal oxide thin films can be remarkably increased by the introduction of èplasmonic nanostructures, leading to higher efficiencies in photovoltaic or photoelectrochemical devices. In the prototypical material combination, Au-TiO2, nano- and mesoscale porosity of TiO2 is desirable to improve not only the light-harvesting, but also the available surface area for chemical reactions. Moreover, great attention has been given to the control of size and shape of Au nanoparticles (NPs) to increase the overall optical properties of the film. In this work, we investigate the optical properties of the composite Au-TiO2 films exhibiting remarkable light scattering properties. TiO2 is characterized by a tree-like hierarchical morphology produced by pulsed laser deposition, and two different configurations for Au integration, namely Au on top and at the bottom of TiO2 are explored by varying the size of Au NPs. The hierarchical oxide morphology allow to achieve superior scattering properties after the combination with Au NPs with respect to films obtained from a commercial paste deposition. Both the Au-top and Au-bottom configurations enable to tune the plasmonic properties of Au NPs. Specifically, outstanding scattering properties are exhibited by the composite TiO2 film grown on top of large (~100 nm) Au NPs. These results show the potential interest of employing such integrated films as photoanodes in dye-sensitized or perovskite-based solar cells, or in photoelectrochemical cells for water splitting. An analogous approach can be employed for alternative materials, both considering the plasmonic structures as well as the semiconductor layer

    Validation of a ROS-Based Synchronization System for Biomechanics Gait Labs

    No full text
    Experimental tests in biomechanics are often composed of several systems and devices, each of them providing information that needs to be acquired and processed. Data synchronization is a key factor for test results that need to be properly analyzed, limiting the influence of time delays between the acquired signals. Standard synchronization protocols are applied in different fields, from industry to telecommunications, but the hardware and software requirements for their implementation are normally difficult to be applied in biomechanics laboratories where instrumentation and protocols are likely to be changed over different experiments. Variability of sensors in the market, experimenter's skills, and test schedules hamper the application of robust standardized synchronization protocols, leading to increase post-processing efforts and the protocol steps for data acquisition. We propose a simple and cheap solution for synchronization that can be applied in experimental scenarios such as biomechanics laboratory based on a raspberry used as a trigger-box. This solution aims to easily synchronize data in a ROS-based network with any devices handling analogic trigger signals. The proposed solution is validated by evaluating time metrics in a system composed of several trigger boxes for a multi-sensor system simulation. The performed validation confirms the applicability of this solution for biomechanic tests with a wide margin of tolerance
    • …
    corecore