11,686 research outputs found

    Phase separation of binary condensates in harmonic and lattice potentials

    Full text link
    We propose a modified Gaussian ansatz to study binary condensates, trapped in harmonic and optical lattice potentials, both in miscible and immiscible domains. The ansatz is an apt one as it leads to the smooth transition from miscible to immiscible domains without any {\em a priori} assumptions. In optical lattice potentials, we analyze the squeezing of the density profiles due to the increase in the depth of the optical lattice potential. For this we develop a model with three potential wells, and define the relationship between the lattice depth and profile of the condensate.Comment: 13 pages, 11 figures, additional references adde

    Isospin effects on the mass dependence of balance energy

    Full text link
    We study the effect of isospin degree of freedom on balance energy throughout the mass range between 50 and 350 for two sets of isotopic systems with N/Z = 1.16 and 1.33 as well as isobaric systems with N/Z = 1.0 and 1.4. Our findings indicate that different values of balance energy for two isobaric systems may be mainly due to the Coulomb repulsion. We also demonstrate clearly the dominance of Coulomb repulsion over symmetry energy.Comment: 5 pages, 3 figures In this version the discussion is in terms of N/Z whereas in the journal the whole discussion is in terms of N/A. The conclusions remain unaffecte

    Analytic models for density of a ground-state spinor condensate

    Full text link
    We demonstrate that the ground state of a trapped spin-1 and spin-2 spinor ferromagnetic Bose-Einstein condensate (BEC) can be well approximated by a single decoupled Gross-Pitaevskii (GP) equation. Useful analytic models for the ground-state densities of ferromagnetic BECs are obtained from the Thomas-Fermi approximation (TFA) to this decoupled equation. Similarly, for the ground states of spin-1 anti-ferromagnetic and spin-2 anti-ferromagnetic and cyclic BECs, some of the spin component densities are zero which reduces the coupled GP equation to a simple reduced form. Analytic models for ground state densities are also obtained for anti-ferromagnetic and cyclic BECs from the TFA to the respective reduced GP equations. The analytic densities are illustrated and compared with the full numerical solution of the GP equation with realistic experimental parameters

    Mobile vector soliton in a spin-orbit coupled spin-11 condensate

    Full text link
    We study the formation of bound states and three-component bright vector solitons in a quasi-one-dimensional spin-orbit-coupled hyperfine spin f=1f=1 Bose-Einstein condensate using numerical solution and variational approximation of a mean-field model. In the antiferromagnetic domain, the solutions are time-reversal symmetric, and the component densities have multi-peak structure. In the ferromagnetic domain, the solutions violate time-reversal symmetry, and the component densities have single-peak structure. The dynamics of the system is not Galelian invariant. From an analysis of Galelian invariance, we establish that the single-peak ferromagnetic vector solitons are true solitons and can move maintaining constant component densities, whereas the antiferromagnetic solitons cannot move with constant component densities
    corecore