814 research outputs found
Optical realization of the two-site Bose-Hubbard model in waveguide lattices
A classical realization of the two-site Bose-Hubbard Hamiltonian, based on
light transport in engineered optical waveguide lattices, is theoretically
proposed. The optical lattice enables a direct visualization of the
Bose-Hubbard dynamics in Fock space.Comment: to be published, J Phys. B (Fast Track Communication
Nonlinear Self-Trapping of Matter Waves in Periodic Potentials
We report the first experimental observation of nonlinear self-trapping of
Bose-condensed 87Rb atoms in a one dimensional waveguide with a superimposed
deep periodic potential . The trapping effect is confirmed directly by imaging
the atomic spatial distribution. Increasing the nonlinearity we move the system
from the diffusive regime, characterized by an expansion of the condensate, to
the nonlinearity dominated self-trapping regime, where the initial expansion
stops and the width remains finite. The data are in quantitative agreement with
the solutions of the corresponding discrete nonlinear equation. Our results
reveal that the effect of nonlinear self-trapping is of local nature, and is
closely related to the macroscopic self-trapping phenomenon already predicted
for double-well systems.Comment: 5 pages, 4 figure
Localization of a dipolar Bose-Einstein condensate in a bichromatic optical lattice
By numerical simulation and variational analysis of the Gross-Pitaevskii
equation we study the localization, with an exponential tail, of a dipolar
Bose-Einstein condensate (DBEC) of Cr atoms in a three-dimensional
bichromatic optical-lattice (OL) generated by two monochromatic OL of
incommensurate wavelengths along three orthogonal directions. For a fixed
dipole-dipole interaction, a localized state of a small number of atoms () could be obtained when the short-range interaction is not too attractive
or not too repulsive. A phase diagram showing the region of stability of a DBEC
with short-range interaction and dipole-dipole interaction is given
Control of unstable macroscopic oscillations in the dynamics of three coupled Bose condensates
We study the dynamical stability of the macroscopic quantum oscillations
characterizing a system of three coupled Bose-Einstein condensates arranged
into an open-chain geometry. The boson interaction, the hopping amplitude and
the central-well relative depth are regarded as adjustable parameters. After
deriving the stability diagrams of the system, we identify three mechanisms to
realize the transition from an unstable to stable behavior and analyze specific
configurations that, by suitably tuning the model parameters, give rise to
macroscopic effects which are expected to be accessible to experimental
observation. Also, we pinpoint a system regime that realizes a
Josephson-junction-like effect. In this regime the system configuration do not
depend on the model interaction parameters, and the population oscillation
amplitude is related to the condensate-phase difference. This fact makes
possible estimating the latter quantity, since the measure of the oscillating
amplitudes is experimentally accessible.Comment: 25 pages, 12 figure
Second Josephson excitations beyond mean field as a toy model for thermal pressure: exact quantum dynamics and the quantum phase model
A simple four-mode Bose-Hubbard model with intrinsic time scale separation
can be considered as a paradigm for mesoscopic quantum systems in thermal
contact. In our previous work we showed that in addition to coherent particle
exchange, a novel slow collective excitation can be identified by a series of
Holstein-Primakoff transformations. This resonant energy exchange mode is not
predicted by linear Bogoliubov theory, and its frequency is sensitive to
interactions among Bogoliubov quasi-particles; it may be referred to as a
second Josephson oscillation, in analogy to the second sound mode of liquid
Helium II. In this paper we will explore this system beyond the
Gross-Pitaevskii mean field regime. We directly compare the classical mean
field dynamics to the exact full quantum many-particle dynamics and show good
agreement over a large range of the system parameters. The second Josephson
frequency becomes imaginary for stronger interactions, however, indicating
dynamical instability of the symmetric state. By means of a generalized quantum
phase model for the full four-mode system, we then show that, in this regime,
high-energy Bogoliubov quasiparticles tend to accumulate in one pair of sites,
while the actual particles preferentially occupy the opposite pair. We
interpret this as a simple model for thermal pressure
Self-trapping of a binary Bose-Einstein condensate induced by interspecies interaction
The problem of self-trapping of a Bose-Einstein condensate (BEC) and a binary
BEC in an optical lattice (OL) and double well (DW) is studied using the
mean-field Gross-Pitaevskii equation. For both DW and OL, permanent
self-trapping occurs in a window of the repulsive nonlinearity of the GP
equation: . In case of OL, the critical nonlinearities
and correspond to a window of chemical potentials
defining the band gap(s) of the periodic OL. The
permanent self-trapped BEC in an OL usually represents a breathing oscillation
of a stable stationary gap soliton. The permanent self-trapped BEC in a DW, on
the other hand, is a dynamically stabilized state without any stationary
counterpart. For a binary BEC with intraspecies nonlinearities outside this
window of nonlinearity, a permanent self trapping can be induced by tuning the
interspecies interaction such that the effective nonlinearities of the
components fall in the above window
Noise Thermometry with Two Weakly Coupled Bose-Einstein Condensates
Here we report on the experimental investigation of thermally induced
fluctuations of the relative phase between two Bose-Einstein condensates which
are coupled via tunneling. The experimental control over the coupling strength
and the temperature of the thermal background allows for the quantitative
analysis of the phase fluctuations. Furthermore, we demonstrate the application
of these measurements for thermometry in a regime where standard methods fail.
With this we confirm that the heat capacity of an ideal Bose gas deviates from
that of a classical gas as predicted by the third law of thermodynamics.Comment: 4 pages, 4 figure
Dynamical Realization of Macroscopic Superposition States of Cold Bosons in a Tilted Double Well
We present exact expressions for the quantum sloshing of Bose-Einstein
condensates in a tilted two-well potential. Tunneling is suppressed by a small
potential difference between wells, or tilt. However, tunneling resonances
occur for critical values of the tilt when the barrier is high. At resonance,
tunneling times on the order of 10-100 ms are possible. Furthermore, such
tilted resonances lead to a dynamical scheme for creating few-body NOON-like
macroscopic superposition states which are protected by the many body
wavefunction against potential fluctuations.Comment: 6 pages, 5 figures, final version, only minor changes from previous
arXiv versio
- …
