864 research outputs found
New nut and sleeve improve flared connections
Improved nut and sleeve of standard stainless steel flared tube connection allows forces on the mating surfaces to be uniformly applied. This can be applied to pressurized fluid systems such as refrigeration, air conditioning, and hydraulic systems
Eigenspace design techniques for active flutter suppression
The application of eigenspace design techniques to an active flutter suppression system for the DAST ARW-2 research drone is examined. Eigenspace design techniques allow the control system designer to determine feedback gains which place controllable eigenvalues in specified configurations and which shape eigenvectors to achieve desired dynamic response. Eigenspace techniques were applied to the control of lateral and longitudinal dynamic response of aircraft. However, little was published on the application of eigenspace techniques to aeroelastic control problems. This discussion will focus primarily on methodology for design of full-state and limited-state (output) feedback controllers. Most of the states in aeroelastic control problems are not directly measurable, and some type of dynamic compensator is necessary to convert sensor outputs to control inputs. Compensator design are accomplished by use of a Kalman filter modified if necessary by the Doyle-Stein procedure for full-state loop transfer function recovery, by some other type of observer, or by transfer function matching
Eigenspace techniques for active flutter suppression
Eigenspace (ES) techniques were used to design an active flutter suppression system for the DAST ARW-2 flight test vehicle. The ES controller meets control surface activity specifications and at the flutter test condition provides reduced wing root torsion at the gust test condition, and results in improved flutter boundaries. The ES controller is compared with a controller designed using Linear Quadratic (LQ) techniques. The LQ controller exhibits better phase margins at the flutter condition than does the ES controller but the LQ design requires large feedback gains on actuator states while the ES does not. This results in reduced overall actuator gain for the LQ design
A combined impact-process evaluation of a program promoting active transport to school: understanding the factors that shaped program effectiveness
This mixed methods study was a comprehensive impact-process evaluation of the Ride2School program in metropolitan and regional areas in Victoria, Australia. The program aimed to promote transport to school for primary school children. Qualitative and quantitative data were collected at baseline and followup from two primary schools involved in the pilot phase of the program and two matched comparison schools, and a further 13 primary schools that participated in the implementation phase of the program. Classroom surveys, structured and unstructured observations, and interviews with Ride2School program staff were used to evaluate the pilot program. For the 13 schools in the second phase of the program, parents and students completed questionnaires at baseline (N = 889) and followup (N = 761). Based on the quantitative data, there was little evidence of an overall increase in active transport to school across participating schools, although impacts varied among individual schools. Qualitative data in the form of observations, interviews, and focus group discussions with students, school staff, and program staff provided insight into the reasons for variable program impacts. This paper highlights the benefits of undertaking a mixed methods approach to evaluating active transport to school programs that enables both measurement and understanding of program impacts.<br /
Eigenspace techniques for active flutter suppression
The use of eigenspace techniques for the design of an active flutter suppression system for a hypothetical research drone is discussed. One leading edge and two trailing edge aerodynamic control surfaces and four sensors (accelerometers) are available for each wing. Full state control laws are designed by selecting feedback gains which place closed loop eigenvalues and shape closed loop eigenvectors so as to stabilize wing flutter and reduce gust loads at the wing root while yielding accepatable robustness and satisfying constrains on rms control surface activity. These controllers are realized by state estimators designed using an eigenvalue placement/eigenvector shaping technique which results in recovery of the full state loop transfer characteristics. The resulting feedback compensators are shown to perform almost as well as the full state designs. They also exhibit acceptable performance in situations in which the failure of an actuator is simulated
A Science Center for the Advanced Composition Explorer
The Advanced Composition Explorer (ACE) mission is supported by an ACE Science Center for the purposes of facilitating collaborative work. It is intended that coordinated use of a centralized science facility by the ACE team will ensure appropriate use of data formatting standards, thus easing access to the data; will improve communications within and to the ACE science working team; and will reduce redundant effort in data processing
A comparison of handwritten and computer-assisted prescriptions in an intensive care unit
BACKGROUND: We conducted a prospective comparative study to evaluate the potential benefit of computer-assisted prescribing (CAP). We compared the accuracy, completeness and time use of CAP with that of conventional handwritten prescribing at the intensive care unit (ICU) of the John Radcliffe Hospital, Oxford, UK. RESULTS: Twenty-five clinicians and 2409 drug entries were evaluated for accuracy, completeness, legibility and time spent prescribing. One hundred and twenty-eight handwritten and 110 CAP charts were monitored. One hundred percent of CAP charts were complete compared to 47% of handwritten charts.Drug prescriptions were divided into three categories: intravenous fluids, intravenous infusions and intermittent drugs. Percentage of correct entries in each category were 64%, 47.5% and 90% for handwritten, compared to 48%, 32% and 90% for CAP charts, respectively.The mean time taken to prescribe was 20 s for hand written prescribing and 55 s for CAP. CONCLUSIONS: Computer-assisted prescriptions were more complete, signed and dated than handwritten prescriptions. Errors in prescribing, including failure to discontinue a drug were not reduced by CAP. Handwritten prescribing was quicker than CAP. Simple enhancements of the computer software could be introduced which might overcome these deficiencies. CAP was successfully integrated into clinical practice in the ICU
Parallel finite element simulation of large ram-air parachutes
In the near future, large ram-air parachutes are expected to provide the capability of delivering 21 ton payloads from altitudes as high as 25,000 ft. In development and test and evaluation of these parachutes the size of the parachute needed and the deployment stages involved make high-performance computing (HPC) simulations a desirable alternative to costly airdrop tests. Although computational simulations based on realistic, 3D, time-dependent models will continue to be a major computational challenge, advanced finite element simulation techniques recently developed for this purpose and the execution of these techniques on HPC platforms are significant steps in the direction to meet this challenge. In this paper, two approaches for analysis of the inflation and gliding of ram-air parachutes are presented. In one of the approaches the point mass flight mechanics equations are solved with the time-varying drag and lift areas obtained from empirical data. This approach is limited to parachutes with similar configurations to those for which data are available. The other approach is 3D finite element computations based on the Navier-Stokes equations governing the airflow around the parachute canopy and Newton's law of motion governing the 3D dynamics of the canopy, with the forces acting on the canopy calculated from the simulated flow field. At the earlier stages of canopy inflation the parachute is modelled as an expanding box, whereas at the later stages, as it expands, the box transforms to a parafoil and glides. These finite element computations are carried out on the massively parallel supercomputers CRAY T3D and Thinking Machines CM-5, typically with millions of coupled, non-linear finite element equations solved simultaneously at every time step or pseudo-time step of the simulation
Incorporating detectability of threatened species into environmental impact assessment
Environmental impact assessment (EIA) is a key mechanism for protecting threatened plant and animal species. Many species are not perfectly detectable and, even when present, may remain undetected during EIA surveys, increasing the risk of site-level loss or extinction of species. Numerous methods now exist for estimating detectability of plants and animals. Despite this, regulations concerning survey protocol and effort during EIAs fail to adequately address issues of detectability. Probability of detection is intrinsically linked to survey effort; thus, minimum survey effort requirements are a useful way to address the risks of false absences. We utilized 2 methods for determining appropriate survey effort requirements during EIA surveys. One method determined the survey effort required to achieve a probability of detection of 0.95 when the species is present. The second method estimated the survey effort required to either detect the species or reduce the probability of presence to 0.05. We applied these methods to Pimelea spinscens subsp. spinescens, a critically endangered grassland plant species in Melbourne, Australia. We detected P. spinescens in only half of the surveys undertaken at sites where it was known to exist. Estimates of the survey effort required to detect the species or demonstrate its absence with any confidence were much higher than the effort traditionally invested in EIA surveys for this species. We argue that minimum survey requirements be established for all species listed under threatened species legislation and hope that our findings will provide an impetus for collecting, compiling, and synthesizing quantitative detectability estimates for a broad range of plant and animal species
- …