With the addition of krypton and silver projectiles we have extended our previous studies of the fragmentation of heavy relativistic nuclei in targets ranging in mass from hydrogen to lead. These projectiles were studied at a number of discrete energies between 450 and 1500A MeV. The total and partial charge-changing cross sections were determined for each energy, target, and projectile, and the values compared with previous predictions. A new parametrization of the dependence of the total charge-changing cross sections on the target and projectile is introduced, based on nuclear charge radii derived from electron scattering. We have also parametrized the energy dependence of the total cross sections over the range of energies studied. New parameters were found for a previous representation of the partial charge-changing cross sections in hydrogen and a new parametrization has been introduced for the nonhydrogen targets. The evidence that limiting fragmentation has been attained for these relatively light projectile nuclei at Bevalac energies is shown to be inconclusive, and further measurements at higher energies will be needed to address this question