35 research outputs found

    Post combustion CO2 capture with substituted ethanolamines and piperazines : Ab initio and DFT studies

    Get PDF
    The emission of greenhouse gases in the atmosphere, particularly carbon dioxide, caused by fossil fuel combustion, has been claimed to be responsible for global warming. Capturing of carbon dioxide from exhaust gases by using aqueous amine solutions is an important process for the reduction of the emission of these gases from power plants. Monoethanolamine (MEA) is used as an industrial solvent for carbon dioxide capture from exhaust gases. However, the use of MEA for CO2 capture from power plants is expensive. Therefore, finding the cheaper solvent for CO2 capture is needed to reduce the CO2 emissions into the atmosphere and thereby saving the biodiversity in the world.</p

    The International Natural Product Sciences Taskforce (INPST) and the power of Twitter networking exemplified through #INPST hashtag analysis

    Get PDF
    Background: The development of digital technologies and the evolution of open innovation approaches have enabled the creation of diverse virtual organizations and enterprises coordinating their activities primarily online. The open innovation platform titled "International Natural Product Sciences Taskforce" (INPST) was established in 2018, to bring together in collaborative environment individuals and organizations interested in natural product scientific research, and to empower their interactions by using digital communication tools. Methods: In this work, we present a general overview of INPST activities and showcase the specific use of Twitter as a powerful networking tool that was used to host a one-week "2021 INPST Twitter Networking Event" (spanning from 31st May 2021 to 6th June 2021) based on the application of the Twitter hashtag #INPST. Results and Conclusion: The use of this hashtag during the networking event period was analyzed with Symplur Signals (https://www.symplur.com/), revealing a total of 6,036 tweets, shared by 686 users, which generated a total of 65,004,773 impressions (views of the respective tweets). This networking event's achieved high visibility and participation rate showcases a convincing example of how this social media platform can be used as a highly effective tool to host virtual Twitter-based international biomedical research events

    Accurate pKa Calculation of the Conjugate Acids of Alkanolamines, Alkaloids and Nucleotide Bases by Quantum Chemical Methods

    No full text
    The pKa of the conjugate acids of alkanolamines, neurotransmitters, alkaloid drugs and nucleotide bases are calculated with density functional methods (B3LYP, M08-HX and M11-L) and ab initio methods (SCS-MP2, G3). Implicit solvent effects are included with a conductor-like polarizable continuum model (CPCM) and universal solvation models (SMD, SM8). G3, SCS-MP2 and M11-L methods coupled with SMD and SM8 solvation models perform well for alkanolamines with mean unsigned errors below 0.20 pKa units, in all cases. Extending this method to the pKa calculation of 35 nitrogen-containing compounds spanning 12 pKa units showed an excellent correlation between experimental and computational pKa values of these 35 amines with the computationally low-cost SM8/M11-L density functional approach

    Improving the Capture of Co2 by Substituted Monoethanolamines: Electronic Effects of Fluorine and Methyl Substituents

    No full text
    The influence of electronic and steric effects on the reaction between CO(2) and monoethanolamine (MEA) absorbents is investigated using computational methods. The pK(a) of the alkanolamine, the reaction enthalpy for carbamate formation, and the hydrolytic carbamate stability are important factors for the efficiency of CO(2) capture. The steric and electronic effects of CH(3), CH(2)F, CHF(2), CF(3), F, dimethyl, difluoro, and bis(2-trifluoromethyl) substituents at the a carbon of MEA on this reaction are investigated. Density functional theory (DFT) (B3LYP, M06-2X, M08-HX and M11-L) and ab initio methods [spin component-scaled second-order Mþller-Plesset theory (SCS-MP2), G3], each coupled with solvent models [conductor-like polarizable continuum model (CPCM) and universal solvation models (SM8 and SMD)], are shown to yield accurately calculated pK(a) values of the substituted MEAs. Specifically, G3, SCS-MP2, and M11-L methods coupled with the SMD and SM8 solvation models perform well with a mean unsigned error (MUE) of only 0.15, 0.24 and 0.25 pK(a) units, respectively. SCS-MP2 is used to calculate the reaction enthalpy for carbamate formation and the carbamate stability towards hydrolysis. With the introduction of ß-fluoro substituents (especially the CH(2) F moiety) the reaction enthalpy for the formation of carbamates can be fine-tuned to be less exothermic than that using the unsubstituted MEA. This implies a reduced energy requirement for the solvent-regeneration step in the post-combustion carbon-capture method, which is currently the energy-limiting step in efficient CO(2) capture. ß-Fluoro-substituted MEAs are also shown to form less stable carbamates than MEA. Thus, ß-fluoro-substituted MEAs display a great potential for the use in the post-combustion carbon-capture process. Finally, a clear correlation is observed between the gas-phase basicity and the tendency to form carbamates. This allows for the rapid prediction of which species will be formed experimentally, and thus the CO(2)-absorbing capacities of alkanolamines can be estimate

    Carbamate Stabilities of Sterically Hindered Amines from Quantum Chemical Methods: Relevance ofr CO2 Capture

    No full text
    The influence of electronic and steric effects on the stabilities of carbamates formed from the reaction of CO2 with a wide range of alkanolamines was investigated by quantum chemical methods. For the calculations, B3LYP, M11-L, MP2, and spin-component-scaled MP2 (SCS-MP2) methods were used, coupled with SMD and SM8 solvation models. A reduction in carbamate stability leads to an increased CO2 absorption capacity of the amine and a reduction of the energy required for solvent regeneration. Important factors for the reduction of the carbamate stability were an increase in steric hindrance around the nitrogen atom, charge on the N atom and intramolecular hydrogen bond strength. The present study indicates that secondary ethanolamines with sterically hindering groups near the N atom show significant potential as candidates for industrial CO2-capture solvents

    Discotic liquid crystalline tris(hexahexyloxytriphenylene)triazines with separate columns of triphenylene and triazine cores

    No full text
    A series of novel discotic liquid crystal compounds containing three pendent triphenylenes connected to a triazine core via spacers of different length that were linked via a triazole group as obtained from an azide–alkyne click reaction was investigated. All compounds of the series exhibit wide-range columnar phases from room temperature to more than 100°C. X-ray reflection measurements indicate an ordering with separate columns of the triazine and triphenylene cores. Quantum chemical calculations confirmed the significant contributions of the triazine and triazole groups to the p–p stacking in the columns. This type of organisation reveals an additional feature of triazole-forming click chemistry and indicates interesting properties for optoelectronic applications

    The Transition States for CO2 Capture by Substituted Ethanolamines

    No full text
    Quantum chemical studies are used to understand the electronic and steric effects on the mechanisms of the reaction of substituted ethanolamines with CO2. SCS-MP2/6-311+G(2d,2p) calculations are used to obtain the activation energy barriers and reaction energies for both the carbamate and bicarbonate formation. Implicit solvent effects are included with the universal solvation model SMD. Carbamate formation is more favorable than bicarbonate formation for monoethanolamine (MEA) both kinetically and thermodynamically. Increase of the steric hindrance on the C atoms around the N atom in substituted ethanolamines favors bicarbonate formation over carbamate formation with lower activation barriers and thereby higher reaction rates. In contrast, substitution by an N-methyl or N-ethyl group on MEA leads to a lower activation barrier for both carbamate formation and bicarbonate formation. As a result, higher reaction rates are expected as compared to MEA, and therefore these compounds have significant potential as industrial CO2 capturing solvents

    Quantum Chemical Studies on Solvents for Post-Combustion Carbon Dioxide Capture: Calculation of pKa and Carbamate Stability of Disubtituted Piperazines

    No full text
    Piperazine is a widely studied solvent for post-combustion carbon dioxide capture. To investigate the possibilities of further improving this process, the electronic and steric effects of CH3, CH2F, CH2OH, CH2NH2, COCH3, and CN groups of 2,5-disubstituted piperazines on the pKa and carbamate stability towards hydrolysis are investigated by quantum chemical methods. For the calculations, B3LYP, M11L, and spin-component-scaled MP2 (SCS-MP2) methods are used and coupled with the SMD solvation model. The experimental pKa values of piperazine, 2-methylpiperazine, and 2,5-dimethylpiperazine agree well with the calculated values. The present study indicates that substitution of CH3, CH2NH2, and CH2OH groups on the 2- and 5-positions of piperazine has a positive impact on the CO2 absorption capacity by reducing the carbamate stability towards hydrolysis. Furthermore, their higher boiling points, relative to piperazine itself, will lead to a reduction of volatility-related losses

    Techno-economic assessment of the production of bio-based chemicals from glutamic acid

    No full text
    In this review, possible process steps for the production of bio-based industrial chemicals from glutamic acid are described, including a techno-economic assessment of all processes. The products under investigation were those that were shown to be synthesized from glutamic acid on lab-scale, namely N-methylpyrrolidone (NMP), N-vinylpyrrolidone (NVP), succinonitrile, and acrylonitrile. The goal was not only to assess the economic feasibility at this stage, but mainly to discover where is the most potential for improvements in these processes, in order to direct future research. The techno-economic assessment leads to the conclusion that the production of NMP and NVP is the most feasible both in terms of technology and economy. Bio-based acrylonitrile and succinonitrile do not seem very profitable under the current process configurations. Especially the acrylonitrile process shows very high costs in relation to the possible gains. Further optimization is necessary, but a clear direction where the optimization should be aimed could be derived from the assessment, and was provided in the discussion of the processes. The main point to optimize was the reaction of glutamic acid with sodium hypochlorite, a bottleneck in both the acrylonitrile and the succinonitrile process
    corecore