48 research outputs found

    Periodic orbits of period 3 in the disc

    Full text link
    Let f be an orientation preserving homeomorphism of the disc D2 which possesses a periodic point of period 3. Then either f is isotopic, relative the periodic orbit, to a homeomorphism g which is conjugate to a rotation by 2 pi /3 or 4 pi /3, or f has a periodic point of least period n for each n in N*.Comment: 7 page

    Imperfect Homoclinic Bifurcations

    Full text link
    Experimental observations of an almost symmetric electronic circuit show complicated sequences of bifurcations. These results are discussed in the light of a theory of imperfect global bifurcations. It is shown that much of the dynamics observed in the circuit can be understood by reference to imperfect homoclinic bifurcations without constructing an explicit mathematical model of the system.Comment: 8 pages, 11 figures, submitted to PR

    A phenomenological approach to normal form modeling: a case study in laser induced nematodynamics

    Full text link
    An experimental setting for the polarimetric study of optically induced dynamical behavior in nematic liquid crystal films has allowed to identify most notably some behavior which was recognized as gluing bifurcations leading to chaos. This analysis of the data used a comparison with a model for the transition to chaos via gluing bifurcations in optically excited nematic liquid crystals previously proposed by G. Demeter and L. Kramer. The model of these last authors, proposed about twenty years before, does not have the central symmetry which one would expect for minimal dimensional models for chaos in nematics in view of the time series. What we show here is that the simplest truncated normal forms for gluing, with the appropriate symmetry and minimal dimension, do exhibit time signals that are embarrassingly similar to the ones found using the above mentioned experimental settings. The gluing bifurcation scenario itself is only visible in limited parameter ranges and substantial aspect of the chaos that can be observed is due to other factors. First, out of the immediate neighborhood of the homoclinic curve, nonlinearity can produce expansion leading to chaos when combined with the recurrence induced by the homoclinic behavior. Also, pairs of symmetric homoclinic orbits create extreme sensitivity to noise, so that when the noiseless approach contains a rich behavior, minute noise can transform the complex damping into sustained chaos. Leonid Shil'nikov taught us that combining global considerations and local spectral analysis near critical points is crucial to understand the phenomenology associated to homoclinic bifurcations. Here this helps us construct a phenomenological approach to modeling experiments in nonlinear dissipative contexts.Comment: 25 pages, 9 figure

    On the Hyperbolicity of Lorenz Renormalization

    Full text link
    We consider infinitely renormalizable Lorenz maps with real critical exponent α>1\alpha>1 and combinatorial type which is monotone and satisfies a long return condition. For these combinatorial types we prove the existence of periodic points of the renormalization operator, and that each map in the limit set of renormalization has an associated unstable manifold. An unstable manifold defines a family of Lorenz maps and we prove that each infinitely renormalizable combinatorial type (satisfying the above conditions) has a unique representative within such a family. We also prove that each infinitely renormalizable map has no wandering intervals and that the closure of the forward orbits of its critical values is a Cantor attractor of measure zero.Comment: 63 pages; 10 figure

    Integrate and Fire Neural Networks, Piecewise Contractive Maps and Limit Cycles

    Full text link
    We study the global dynamics of integrate and fire neural networks composed of an arbitrary number of identical neurons interacting by inhibition and excitation. We prove that if the interactions are strong enough, then the support of the stable asymptotic dynamics consists of limit cycles. We also find sufficient conditions for the synchronization of networks containing excitatory neurons. The proofs are based on the analysis of the equivalent dynamics of a piecewise continuous Poincar\'e map associated to the system. We show that for strong interactions the Poincar\'e map is piecewise contractive. Using this contraction property, we prove that there exist a countable number of limit cycles attracting all the orbits dropping into the stable subset of the phase space. This result applies not only to the Poincar\'e map under study, but also to a wide class of general n-dimensional piecewise contractive maps.Comment: 46 pages. In this version we added many comments suggested by the referees all along the paper, we changed the introduction and the section containing the conclusions. The final version will appear in Journal of Mathematical Biology of SPRINGER and will be available at http://www.springerlink.com/content/0303-681

    Julia Kristeva, 'woman's primary homosexuality' and homophobia

    Get PDF
    This article offers a critical reading of what Julia Kristeva calls ‘woman’s primary homosexuality’ and discusses homophobia in Kristeva’s work. If we are to draw conclusions on the merits and limitations of Kristeva’s theories of sexuality, homophobia needs to be assessed within the aesthetic and ethical contexts that typify Kristeva’s overall oeuvre. The article shows that we can apply Kristeva’s semiotic/symbolic model of signification to sexuality and argues for the construction of ‘primary homosexuality’ as the manifestation of resistance to authorized sexual identity. The article also shows why the political demands to recognize lesbianism as a valid form of sexuality and especially as an intelligible lifestyle go against Kristeva’s understanding of what resistance entails
    corecore