48 research outputs found
Periodic orbits of period 3 in the disc
Let f be an orientation preserving homeomorphism of the disc D2 which
possesses a periodic point of period 3. Then either f is isotopic, relative the
periodic orbit, to a homeomorphism g which is conjugate to a rotation by 2 pi
/3 or 4 pi /3, or f has a periodic point of least period n for each n in N*.Comment: 7 page
Imperfect Homoclinic Bifurcations
Experimental observations of an almost symmetric electronic circuit show
complicated sequences of bifurcations. These results are discussed in the light
of a theory of imperfect global bifurcations. It is shown that much of the
dynamics observed in the circuit can be understood by reference to imperfect
homoclinic bifurcations without constructing an explicit mathematical model of
the system.Comment: 8 pages, 11 figures, submitted to PR
A phenomenological approach to normal form modeling: a case study in laser induced nematodynamics
An experimental setting for the polarimetric study of optically induced
dynamical behavior in nematic liquid crystal films has allowed to identify most
notably some behavior which was recognized as gluing bifurcations leading to
chaos. This analysis of the data used a comparison with a model for the
transition to chaos via gluing bifurcations in optically excited nematic liquid
crystals previously proposed by G. Demeter and L. Kramer. The model of these
last authors, proposed about twenty years before, does not have the central
symmetry which one would expect for minimal dimensional models for chaos in
nematics in view of the time series. What we show here is that the simplest
truncated normal forms for gluing, with the appropriate symmetry and minimal
dimension, do exhibit time signals that are embarrassingly similar to the ones
found using the above mentioned experimental settings. The gluing bifurcation
scenario itself is only visible in limited parameter ranges and substantial
aspect of the chaos that can be observed is due to other factors. First, out of
the immediate neighborhood of the homoclinic curve, nonlinearity can produce
expansion leading to chaos when combined with the recurrence induced by the
homoclinic behavior. Also, pairs of symmetric homoclinic orbits create extreme
sensitivity to noise, so that when the noiseless approach contains a rich
behavior, minute noise can transform the complex damping into sustained chaos.
Leonid Shil'nikov taught us that combining global considerations and local
spectral analysis near critical points is crucial to understand the
phenomenology associated to homoclinic bifurcations. Here this helps us
construct a phenomenological approach to modeling experiments in nonlinear
dissipative contexts.Comment: 25 pages, 9 figure
On the Hyperbolicity of Lorenz Renormalization
We consider infinitely renormalizable Lorenz maps with real critical exponent
and combinatorial type which is monotone and satisfies a long return
condition. For these combinatorial types we prove the existence of periodic
points of the renormalization operator, and that each map in the limit set of
renormalization has an associated unstable manifold. An unstable manifold
defines a family of Lorenz maps and we prove that each infinitely
renormalizable combinatorial type (satisfying the above conditions) has a
unique representative within such a family. We also prove that each infinitely
renormalizable map has no wandering intervals and that the closure of the
forward orbits of its critical values is a Cantor attractor of measure zero.Comment: 63 pages; 10 figure
Integrate and Fire Neural Networks, Piecewise Contractive Maps and Limit Cycles
We study the global dynamics of integrate and fire neural networks composed
of an arbitrary number of identical neurons interacting by inhibition and
excitation. We prove that if the interactions are strong enough, then the
support of the stable asymptotic dynamics consists of limit cycles. We also
find sufficient conditions for the synchronization of networks containing
excitatory neurons. The proofs are based on the analysis of the equivalent
dynamics of a piecewise continuous Poincar\'e map associated to the system. We
show that for strong interactions the Poincar\'e map is piecewise contractive.
Using this contraction property, we prove that there exist a countable number
of limit cycles attracting all the orbits dropping into the stable subset of
the phase space. This result applies not only to the Poincar\'e map under
study, but also to a wide class of general n-dimensional piecewise contractive
maps.Comment: 46 pages. In this version we added many comments suggested by the
referees all along the paper, we changed the introduction and the section
containing the conclusions. The final version will appear in Journal of
Mathematical Biology of SPRINGER and will be available at
http://www.springerlink.com/content/0303-681
Julia Kristeva, 'woman's primary homosexuality' and homophobia
This article offers a critical reading of what Julia Kristeva calls ‘woman’s primary homosexuality’ and discusses homophobia in Kristeva’s work. If we are to draw conclusions on the merits and limitations of Kristeva’s theories of sexuality, homophobia needs to be assessed within the aesthetic and ethical contexts that typify Kristeva’s overall oeuvre. The article shows that we can apply Kristeva’s semiotic/symbolic model of signification to sexuality and argues for the construction of ‘primary homosexuality’ as the manifestation of resistance to authorized sexual identity. The article also shows why the political demands to recognize lesbianism as a valid form of sexuality and especially as an intelligible lifestyle go against Kristeva’s understanding of what resistance entails