2,678 research outputs found

    Anomalous Spin Dynamics of Hubbard Model on Honeycomb Lattices

    Full text link
    In this paper, the honeycomb Hubbard model in optical lattices is investigated using O(3) non-linear sigma model. A possible quantum non-magnetic insulator in a narrow parameter region is found near the metal-insulator transition. We study the corresponding dynamics of magnetic properties, and find that the narrow region could be widened by hole doping.Comment: 9 pages, 12 figure

    Influence of chemical and magnetic interface properties of Co-Fe-B / MgO / Co-Fe-B tunnel junctions on the annealing temperature dependence of the magnetoresistance

    Get PDF
    The knowledge of chemical and magnetic conditions at the Co40Fe40B20 / MgO interface is important to interpret the strong annealing temperature dependence of tunnel magnetoresistance of Co-Fe-B / MgO / Co-Fe-B magnetic tunnel junctions, which increases with annealing temperature from 20% after annealing at 200C up to a maximum value of 112% after annealing at 350C. While the well defined nearest neighbor ordering indicating crystallinity of the MgO barrier does not change by the annealing, a small amount of interfacial Fe-O at the lower Co-Fe-B / MgO interface is found in the as grown samples, which is completely reduced after annealing at 275C. This is accompanied by a simultaneous increase of the Fe magnetic moment and the tunnel magnetoresistance. However, the TMR of the MgO based junctions increases further for higher annealing temperature which can not be caused by Fe-O reduction. The occurrence of an x-ray absorption near-edge structure above the Fe and Co L-edges after annealing at 350C indicates the recrystallization of the Co-Fe-B electrode. This is prerequisite for coherent tunneling and has been suggested to be responsible for the further increase of the TMR above 275C. Simultaneously, the B concentration in the Co-Fe-B decreases with increasing annealing temperature, at least some of the B diffuses towards or into the MgO barrier and forms a B2O3 oxide

    Hedging American contingent claims with constrained portfolios

    Full text link
    The valuation theory for American Contingent Claims, due to Bensoussan (1984) and Karatzas (1988), is extended to deal with constraints on portfolio choice , including incomplete markets and borrowing/short-selling constraints, or with different interest rates for borrowing and lending. In the unconstrained case, the classical theory provides a single arbitrage-free price ; this is expressed as the supremum, over all stopping times, of the claim's expected discounted value under the equivalent martingale measure. In the presence of constraints, is replaced by an entire interval of arbitrage-free prices, with endpoints characterized as . Here is the analogue of , the arbitrage-free price with unconstrained portfolios, in an auxiliary market model ; and the family is suitably chosen, to contain the original model and to reflect the constraints on portfolios. For several such constraints, explicit computations of the endpoints are carried out in the case of the American call-option. The analysis involves novel results in martingale theory (including simultaneous Doob-Meyer decompositions), optimal stopping and stochastic control problems, stochastic games, and uses tools from convex analysis.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42331/1/780-2-3-215_80020215.pd

    Use of Prostate-specific Antigen Testing in Medicare Beneficiaries: Association with Previous Evaluation

    Get PDF
    Objective: Determine uptake of prostate-specific antigen (PSA) testing in Medicare beneficiaries according to previous receipt of PSA testing. Methods: A 5% random sample of men aged 67 years or older without a previous diagnosis of prostate cancer was identified through 2009-2012 Medicare claims. We measured the annualized frequency of PSA screening among men due for PSA testing, stratified by PSA testing use in the previous 2 years, and clustered by ordering provider. Results: Throughout the study period, PSA testing use was consistently higher for men with previous screening than for men without previous screening. For men without previous screening, there was a decline in testing that was most pronounced in 2012. Compared with 2009, the corresponding odds ratios were 0.98 [95% confidence interval (CI) (0.96-1.00)] in 2010, 0.94 [95% CI (0.92-0.95)] in 2011, and 0.66 [95% CI (0.65-0.68)] in 2012. In contrast, for men with previous screening, PSA testing frequency was stable from 2009 to 2011, and declined to a lesser extent in 2012 [odds ratio 0.80, 95% CI (0.79-0.81)]. Conclusion: Receipt of PSA testing is highly dependent on whether an individual was tested in the recent past. In previously unscreened men, the largest decrease occurred in 2012, which may reflect in part the publication of US Preventive Services Task Force guidelines, but there was much less impact among men already being screened. © 2017 Family Medicine and Community Health

    Microstructural characterization of AISI 431 martensitic stainless steel laser-deposited coatings

    Get PDF
    High cooling rates during laser cladding of stainless steels may alter the microstructure and phase constitution of the claddings and consequently change their functional properties. In this research, solidification structures and solid state phase transformation products in single and multi layer AISI 431 martensitic stainless steel coatings deposited by laser cladding at different processing speeds are investigated by optical microscopy, Scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), orientation imaging microscopy (OIM), ternary phase diagram, Schaeffler and TTT diagrams. The results of this study show how partitionless solidification and higher solidification rates alter the microstructure and phase constitution of martensitic stainless steel laser deposited coatings. In addition, it is shown that while different cladding speeds have no effect on austenite–martensite orientation relationship in the coatings, increasing the cladding speed has resulted in a reduction of hardness in deposited coatings which is in contrast to the common idea about obtaining higher hardness values at higher cladding speeds.

    Coexistence of Itinerant Electrons and Local Moments in Iron-Based Superconductors

    Full text link
    In view of the recent experimental facts in the iron-pnictides, we make a proposal that the itinerant electrons and local moments are simultaneously present in such multiband materials. We study a minimal model composed of coupled itinerant electrons and local moments to illustrate how a consistent explanation of the experimental measurements can be obtained in the leading order approximation. In this mean-field approach, the spin-density-wave (SDW) order and superconducting pairing of the itinerant electrons are not directly driven by the Fermi surface nesting, but are mainly induced by their coupling to the local moments. The presence of the local moments as independent degrees of freedom naturally provides strong pairing strength for superconductivity and also explains the normal-state linear-temperature magnetic susceptibility above the SDW transition temperature. We show that this simple model is supported by various anomalous magnetic properties and isotope effect which are in quantitative agreement with experiments.Comment: 7 pages, 4 figures; an expanded versio

    Connecting discrete and continuous path-dependent options

    Full text link
    This paper develops methods for relating the prices of discrete- and continuous-time versions of path-dependent options sensitive to extremal values of the underlying asset, including lookback, barrier, and hindsight options. The relationships take the form of correction terms that can be interpreted as shifting a barrier, a strike, or an extremal price. These correction terms enable us to use closed-form solutions for continuous option prices to approximate their discrete counterparts. We also develop discrete-time discrete-state lattice methods for determining accurate prices of discrete and continuous path-dependent options. In several cases, the lattice methods use correction terms based on the connection between discrete- and continuous-time prices which dramatically improve convergence to the accurate price.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42332/1/780-3-1-55_90030055.pd

    Electronic structure, magnetic and optical properties of intermetallic compounds R2Fe17 (R=Pr,Gd)

    Full text link
    In this paper we report comprehensive experimental and theoretical investigation of magnetic and electronic properties of the intermetallic compounds Pr2Fe17 and Gd2Fe17. For the first time electronic structure of these two systems was probed by optical measurements in the spectral range of 0.22-15 micrometers. On top of that charge carriers parameters (plasma frequency and relaxation frequency) and optical conductivity s(w) were determined. Self-consistent spin-resolved bandstructure calculations within the conventional LSDA+U method were performed. Theoretical interpetation of the experimental s(w) dispersions indicates transitions between 3d and 4p states of Fe ions to be the biggest ones. Qualitatively the line shape of the theoretical optical conductivity coincides well with our experimental data. Calculated by LSDA+U method magnetic moments per formula unit are found to be in good agreement with observed experimental values of saturation magnetization.Comment: 16 pages, 5 figures, 1 tabl

    High energy pseudogap and its evolution with doping in Fe-based superconductors as revealed by optical spectroscopy

    Full text link
    We report optical spectroscopic measurements on electron- and hole-doped BaFe2As2. We show that the compounds in the normal state are not simple metals. The optical conductivity spectra contain, in addition to the free carrier response at low frequency, a temperature-dependent gap-like suppression at rather high energy scale near 0.6 eV. This suppression evolves with the As-Fe-As bond angle induced by electron- or hole-doping. Furthermore, the feature becomes much weaker in the Fe-chalcogenide compounds. We elaborate that the feature is caused by the strong Hund's rule coupling effect between the itinerant electrons and localized electron moment arising from the multiple Fe 3d orbitals. Our experiments demonstrate the coexistence of itinerant and localized electrons in iron-based compounds, which would then lead to a more comprehensive picture about the metallic magnetism in the materials.Comment: 6 pages, 7 figure
    • …
    corecore