11,961 research outputs found
Massless Scalar Field Propagator in a Quantized Space-Time
We consider in detail the analytic behaviour of the non-interacting massless
scalar field two-point function in H.S. Snyder's discretized non-commuting
spacetime. The propagator we find is purely real on the Euclidean side of the
complex plane and goes like as from either the
Euclidean or Minkowski side. The real part of the propagator goes smoothly to
zero as increases to the discretization scale and remains zero
for . This behaviour is consistent with the termination of
single-particle propagation on the ultraviolet side of the discretization
scale. The imaginary part of the propagator, consistent with a
multiparticle-production branch discontinuity, is finite and continuous on the
Minkowski side, slowly falling to zero when . Finally, we
argue that the spectral function for the multiparticle states appears to
saturate as probes just beyond the discretization scale. We
speculate on the cosmological consequences of such a spectral function.Comment: 6 pages, 1 eps figure embedded in manuscrip
Liquid-vapor interface of a polydisperse fluid
We report a Grand Canonical Monte Carlo simulation study of the liquid-vapor
interface of a model fluid exhibiting polydispersity in terms of the particle
size . The bulk density distribution, , of the system
is controlled by the imposed chemical potential distribution . We
choose the latter such that assumes a Schulz form with
associated degree of polydispersity . By introducing a smooth
attractive wall, a planar liquid-vapor interface is formed for bulk state
points within the region of liquid-vapor coexistence. Owing to fractionation,
the pure liquid phase is enriched in large particles, with respect to the
coexisting vapor. We investigate how the spatial non-uniformity of the density
near the liquid-vapor interface affects the evolution of the local distribution
of particle sizes between the limiting pure phase forms. We find (as previously
predicted by density functional theory, Bellier-Castella {\em et al}, Phys.
Rev. {\bf E65}, 021503 (2002)) a segregation of smaller particles to the
interface. The magnitude of this effect is quantified for various via
measurements of the relative adsorption. Additionally, we consider the utility
of various estimators for the interfacial width and highlight the difficulties
of isolating the intrinsic contribution of polydispersity to this width.Comment: 9 pages, 10 Fig
Visualizing Meta-Features in Proteomic Maps
<p>Abstract</p> <p>Background</p> <p>The steps of a high-throughput proteomics experiment include the separation, differential expression and mass spectrometry-based identification of proteins. However, the last and more challenging step is inferring the biological role of the identified proteins through their association with interaction networks, biological pathways, analysis of the effect of post-translational modifications, and other protein-related information.</p> <p>Results</p> <p>In this paper, we present an integrative visualization methodology that allows combining experimentally produced proteomic features with protein meta-features, typically coming from meta-analysis tools and databases, in synthetic Proteomic Feature Maps. Using three proteomics analysis scenarios, we show that the proposed visualization approach is effective in filtering, navigating and interacting with the proteomics data in order to address visually challenging biological questions. The novelty of our approach lies in the ease of integration of any user-defined proteomic features in easy-to-comprehend visual representations that resemble the familiar 2D-gel images, and can be adapted to the user's needs. The main capabilities of the developed VIP software, which implements the presented visualization methodology, are also highlighted and discussed.</p> <p>Conclusions</p> <p>By using this visualization and the associated VIP software, researchers can explore a complex heterogeneous proteomics dataset from different perspectives in order to address visually important biological queries and formulate new hypotheses for further investigation. VIP is freely available at <url>http://pelopas.uop.gr/~egian/VIP/index.html</url>.</p
Optimal Renormalization-Group Improvement of R(s) via the Method of Characteristics
We discuss the application of the method of characteristics to the
renormalization-group equation for the perturbative QCD series within the
electron-positron annihilation cross-section. We demonstrate how one such
renormalization-group improvement of this series is equivalent to a closed-form
summation of the first four towers of renormalization-group accessible
logarithms to all orders of perturbation theory
Computing singularities of perturbation series
Many properties of current \emph{ab initio} approaches to the quantum
many-body problem, both perturbational or otherwise, are related to the
singularity structure of Rayleigh--Schr\"odinger perturbation theory. A
numerical procedure is presented that in principle computes the complete set of
singularities, including the dominant singularity which limits the radius of
convergence. The method approximates the singularities as eigenvalues of a
certain generalized eigenvalue equation which is solved using iterative
techniques. It relies on computation of the action of the perturbed Hamiltonian
on a vector, and does not rely on the terms in the perturbation series. Some
illustrative model problems are studied, including a Helium-like model with
-function interactions for which M{\o}ller--Plesset perturbation theory
is considered and the radius of convergence found.Comment: 11 figures, submitte
Explosion of a massive, He-rich star at z=0.16
We present spectroscopic and photometric data of the peculiar SN 2001gh,
discovered by the 'Southern inTermediate Redshift ESO Supernova Search'
(STRESS) at a redshift z=0.16. SN 2001gh has relatively high luminosity at
maximum (M_B = -18.55 mag), while the light curve shows a broad peak. An
early-time spectrum shows an almost featureless, blue continuum with a few weak
and shallow P-Cygni lines that we attribute to HeI. HeI lines remain the only
spectral features visible in a subsequent spectrum, obtained one month later. A
remarkable property of SN 2001gh is the lack of significant spectral evolution
over the temporal window of nearly one month separating the two spectra. In
order to explain the properties of SN 2001gh, three powering mechanism are
explored, including radioactive decays of a moderately large amount of 56Ni,
magnetar spin-down, and interaction of SN ejecta with circumstellar medium. We
favour the latter scenario, with a SN Ib wrapped in a dense, circumstellar
shell. The fact that no models provide an excellent fit with observations,
confirms the troublesome interpretation of the nature of SN 2001gh. A rate
estimate for SN 2001gh-like event is also provided, confirming the intrinsic
rarity of these objects.Comment: 11 pages, 8 figures, 3 tables. Accepted by MNRA
Shape of a liquid front upon dewetting
We examine the profile of a liquid front of a film that is dewetting a solid
substrate. Since volume is conserved, the material that once covered the
substrate is accumulated in a rim close to the three phase contact line.
Theoretically, such a profile of a Newtonian liquid resembles an exponentially
decaying harmonic oscillation that relaxes into the prepared film thickness.
For the first time, we were able to observe this behavior experimentally. A
non-Newtonian liquid - a polymer melt - however, behaves differently. Here,
viscoelastic properties come into play. We will demonstrate that by analyzing
the shape of the rim profile. On a nm scale, we gain access to the rheology of
a non-Newtonian liquid.Comment: 4 pages, 4 figure
On the origin of the neutral hydrogen supershells: the ionized progenitors and the limitations of the multiple supernovae hypothesis
Here we address the question whether the ionized shells associated with giant
HII regions can be progenitors of the larger HI shell-like objects found in the
Milky Way and other spiral and dwarf irregular galaxies. We use for our
analysis a sample of 12 HII shells presented recently by Rela\~no et al. (2005,
2007). We calculate the evolutionary tracks that these shells would have if
their expansion is driven by multiple supernovae explosions from the parental
stellar clusters. We find, contrary to Rela\~no et al. (2007), that the
evolutionary tracks of their sample HII shells are inconsistent with the
observed parameters of the largest and most massive neutral hydrogen
supershells. We conclude that HII shells found inside giant HII regions may
represent the progenitors of small or intermediate HI shells, however they
cannot evolve into the largest HI objects unless, aside from the multiple
supernovae explosions, an additional energy source contributes to their
expansion.Comment: Accepted for publication in ApJ, tentatively scheduled for the ApJ
July 1, 2008, v681n1 issue. 19 pages, 4 figure
Simulation-driven emulation of collaborative algorithms to assess their requirements for a large-scale WSN implementation
Assessing how the performance of a decentralized wireless sensor network (WSN) algorithm's implementation scales, in terms of communication and energy costs, as the network size increases is an essential requirement before its field deployment. Simulations are commonly used for this purpose, especially for large-scale environmental monitoring applications. However, it is difficult to evaluate energy consumption, processing and memory requirements before the algorithm is really ported to a real WSN platform. We propose a method for emulating the operation of collaborative algorithms in large-scale WSNs by re-using a small number of available real sensor nodes. We demonstrate the potential of the proposed simulation-driven WSN emulation approach by using it to estimate how communication and energy costs scale with the networkâs size when implementing a collaborative algorithm we developed in for tracking the spatiotemporal evolution of a progressing environmental hazard
- âŚ