19,395 research outputs found

    Meta-Stable Brane Configurations by Adding an Orientifold-Plane to Giveon-Kutasov

    Full text link
    In hep-th/0703135, they have found the type IIA intersecting brane configuration where there exist three NS5-branes, D4-branes and anti-D4-branes. By analyzing the gravitational interaction for the D4-branes in the background of the NS5-branes, the phase structures in different regions of the parameter space were studied in the context of classical string theory. In this paper, by adding the orientifold 4-plane and 6-plane to the above brane configuration, we describe the intersecting brane configurations of type IIA string theory corresponding to the meta-stable nonsupersymmetric vacua of these gauge theories.Comment: 21 pp, 6 figures; reduced bytes of figures, DBI action analysis added and to appear in JHE

    Supersymmetry Breaking Vacua from M Theory Fivebranes

    Full text link
    We consider intersecting brane configurations realizing N=2 supersymmetric gauge theories broken to N=1 by multitrace superpotentials, and softly to N=0. We analyze, in the framework of M5-brane wrapping a curve, the supersymmetric vacua and the analogs of spontaneous supersymmetry breaking and soft supersymmetry breaking in gauge theories. We show that the M5-brane does not exhibit the analog of metastable spontaneous supersymmetry breaking, and does not have non-holomorphic minimal volume curves with holomorphic boundary conditions. However, we find that any point in the N=2 moduli space can be rotated to a non-holomorphic minimal volume curve, whose boundary conditions break supersymmetry. We interpret these as the analogs of soft supersymmetry breaking vacua in the gauge theory.Comment: 32 pages, 8 figures, harvmac; v2: corrections in eq. 3.6 and in section 6, reference adde

    In situ real-time analysis of alloy film composition and segregation dynamics with parallel detection reflection electron energy loss spectroscopy

    Get PDF
    Real-time measurements of GexSi1 – x/Si(001) composition and segregation dynamics in Sn/Si(001) in molecular beam epitaxy are demonstrated using parallel detection reflection electron energy loss spectroscopy. Parallel detection enables quantitative acquisition of low-loss spectra in a time of < 500 µs and surface composition determination in GexSi1 – x/Si(001) via Ge L2,3 core loss analysis to a precision of approximately 2% in time of order 1 s. Segregation and trapping kinetics of monolayer thickness Sn films during Si epitaxy on Sn-covered Si(100) has also been studied using the Sn M4.5 core loss

    Quantisation of Conformal Fields in Three-dimensional Anti-de Sitter Black Hole Spacetime

    Full text link
    Utilizing the conformal-flatness nature of 3-dim. Anti-de Sitter (AdS_3) black hole solution of Banados, Teitelboim and Zanelli, the quantisation of conformally-coupled scalar and spinor fields in this background spacetime is explicitly carried out. In particular, mode expansion forms and propagators of the fields are obtained in closed forms. The vacuum in this conformally-coupled field theories in AdS_3 black hole spacetime, which is conformally-flat, is the conformal vacuum which is unique and has global meaning. This point particularly suggests that now the particle production by AdS_3 black hole spacetime should be absent. General argument establishing the absence of real particle creation by AdS_3 black hole spacetime for this case of conformal triviality is provided. Then next, using the explicit mode expansion forms for conformally-coupled scalar and spinor fields, the bosonic and fermionic superradiances are examined and found to be absent confirming the expectation.Comment: 51 pages, Revtex, version to appear in Int. J. Mod. Phys.

    Large-Scale Distributed Bayesian Matrix Factorization using Stochastic Gradient MCMC

    Get PDF
    Despite having various attractive qualities such as high prediction accuracy and the ability to quantify uncertainty and avoid over-fitting, Bayesian Matrix Factorization has not been widely adopted because of the prohibitive cost of inference. In this paper, we propose a scalable distributed Bayesian matrix factorization algorithm using stochastic gradient MCMC. Our algorithm, based on Distributed Stochastic Gradient Langevin Dynamics, can not only match the prediction accuracy of standard MCMC methods like Gibbs sampling, but at the same time is as fast and simple as stochastic gradient descent. In our experiments, we show that our algorithm can achieve the same level of prediction accuracy as Gibbs sampling an order of magnitude faster. We also show that our method reduces the prediction error as fast as distributed stochastic gradient descent, achieving a 4.1% improvement in RMSE for the Netflix dataset and an 1.8% for the Yahoo music dataset

    TBA, NLO Luscher correction, and double wrapping in twisted AdS/CFT

    Get PDF
    The ground-state energy of integrably-twisted theories is analyzed in finite volume. We derive the leading and next-to-leading order (NLO) L\"uscher-type corrections for large volumes of the vacuum energy for integrable theories with twisted boundary conditions and twisted S-matrix. We then derive the twisted thermodynamic Bethe ansatz (TBA) equations to describe exactly the ground state, from which we obtain an untwisted Y-system. The two approaches are compared by expanding the TBA equations to NLO, and exact agreement is found. We give explicit results for the O(4) model and for the three-parameter family of γ\gamma-deformed (non-supersymmetric) planar AdS/CFT model, where the ground-state energy can be nontrivial and can acquire finite-size corrections. The NLO corrections, which correspond to double-wrapping diagrams, are explicitly evaluated for the latter model at six loops.Comment: 42 pages, 2 figures, v2: references added, v3: minor correction

    Densest Subgraph in Dynamic Graph Streams

    Full text link
    In this paper, we consider the problem of approximating the densest subgraph in the dynamic graph stream model. In this model of computation, the input graph is defined by an arbitrary sequence of edge insertions and deletions and the goal is to analyze properties of the resulting graph given memory that is sub-linear in the size of the stream. We present a single-pass algorithm that returns a (1+ϵ)(1+\epsilon) approximation of the maximum density with high probability; the algorithm uses O(\epsilon^{-2} n \polylog n) space, processes each stream update in \polylog (n) time, and uses \poly(n) post-processing time where nn is the number of nodes. The space used by our algorithm matches the lower bound of Bahmani et al.~(PVLDB 2012) up to a poly-logarithmic factor for constant ϵ\epsilon. The best existing results for this problem were established recently by Bhattacharya et al.~(STOC 2015). They presented a (2+ϵ)(2+\epsilon) approximation algorithm using similar space and another algorithm that both processed each update and maintained a (4+ϵ)(4+\epsilon) approximation of the current maximum density in \polylog (n) time per-update.Comment: To appear in MFCS 201
    corecore