439 research outputs found

    The self-dual gauge fields and the domain wall fermion zero modes

    Full text link
    A new type of gauge fixing of the Coulomb gauge domain wall fermion system that reduces the fluctuation of the effective running coupling and the effective mass of arbitrary momentum direction including the region outside the cylinder cut region is proposed and tested in the 163×32×1616^3\times 32\times 16 gauge configurations of RBC/UKQCD collaboration. The running coupling at the lowest momentum point does not show infrared suppression and compatible with the experimental data extracted from the JLab collaboration. The source of the fluctuation of the effective mass near momentum p=p=0.6GeV region is expected to be due to the domain wall fermion zero modes.Comment: 12 pages 2 figures, extended arguments and references adde

    Roles of the color antisymmetric ghost propagator in the infrared QCD

    Full text link
    The results of Coulomb gauge and Landau gauge lattice QCD simulation do not agree completely with continuum theory. There are indications that the ghost propagator in the infrared region is not purely color diagonal as in high energy region. After presenting lattice simulation of configurations produced with Kogut-Susskind fermion (MILC collaboration) and those with domain wall fermion (RBC/UKQCD collaboration), I investigate in triple gluon vertex and the ghost-gluon-ghost vertex how the square of the color antisymmetric ghost contributes. Then the effect of the vertex correction to the gluon propagator and the ghost propagator is investigated. Recent Dyson-Schwinger equation analysis suggests the ghost dressing function G(0)=G(0)= finite and no infrared enhancement or αG=0\alpha_G=0. But the ghost propagator renormalized by the loop containing a product of color antisymmetric ghost is expected to behave as r=G(q2)q2_r =-\frac{G(q^2)}{q^2} with G(q2)q2(1+αG)G(q^2)\propto q^{-2(1+\alpha_G)} with αG=0.5\alpha_G = 0.5, if the fixed point scenario is valid. I interpret the αG=0\alpha_G=0 solution should contain a vertex correction. The infrared exponent of our lattice Landau gauge gluon propagator of the RBC/UKQCD is κ=αG=0.5\kappa=\alpha_G=-0.5 and that of MILC is about -0.7. The implication for the Kugo-Ojima color confinement criterion, QCD effective coupling and the Slavnov identity are given.Comment: 13 pages 10 figures, references added and revised. version to be published in Few-Body System

    Infrared features of unquenched finite temperature lattice Landau gauge QCD

    Get PDF
    The color diagonal and color antisymmetric ghost propagators slightly above TcT_c of Nf=2N_f=2 MILC 243×1224^3\times 12 lattices are measured and compared with zero temperature unquenched Nf=2+1N_f=2+1 MILCc_c 203×6420^3\times 64 and MILCf_f 283×9628^3\times 96 lattices and zero temperature quenched 56456^4 β=6.4\beta=6.4 and 6.45 lattices. The expectation value of the color antisymmetric ghost propagator ϕc(q)\phi^c(q) is zero but its Binder cumulant, which is consistent with that of Nc21N_c^2-1 dimensional Gaussian distribution below TcT_c, decreases above TcT_c. Although the color diagonal ghost propagator is temperature independent, the l1l^1 norm of the color antisymmetric ghost propagator is temperature dependent. The expectation value of the ghost condensate observed at zero temperature unquenched configuration is consistent with 0 in T>TcT>T_c. We also measure transverse, magnetic and electric gluon propagator and extract gluon screening masses. The running coupling measured from the product of the gluon dressing function and the ghost dressing function are almost temperature independent but the effect of A2A^2 condensate observed at zero temperature is consistent with 0 in T>TcT>T_c. The transverse gluon dressing function at low temperature has a peak in the infrared but it becomes flatter at high temperature. Its absolute value in the high momentum is larger for high temperature and similar to the magnetic gluon dressing function. The electric gluon propagator at high momentum is temperature independent. These data imply that the magnetic gluon propagator and the color antisymmetric ghost propagator are affected by the presence of dynamical quarks and there are strong non-perturbative effects through the temperature dependent color anti-symmetric ghost propagator.Comment: 11 pages 16 figures, version accepted for publication in Phys. Rev.

    Numerical Study of the Ghost-Gluon Vertex in Landau gauge

    Full text link
    We present a numerical study of the ghost-gluon vertex and of the corresponding renormalization function \widetilde{Z}_1(p^2) in minimal Landau gauge for SU(2) lattice gauge theory. Data were obtained for three different lattice volumes (V = 4^4, 8^4, 16^4) and for three lattice couplings \beta = 2.2, 2.3, 2.4. Gribov-copy effects have been analyzed using the so-called smeared gauge fixing. We also consider two different sets of momenta (orbits) in order to check for possible effects due to the breaking of rotational symmetry. The vertex has been evaluated at the asymmetric point (0;p,-p) in momentum-subtraction scheme. We find that \widetilde{Z}_1(p^2) is approximately constant and equal to 1, at least for momenta p > ~ 1 GeV. This constitutes a nonperturbative verification of the so-called nonrenormalization of the Landau ghost-gluon vertex. Finally, we use our data to evaluate the running coupling constant \alpha_s(p^2).Comment: 19 pages, 6 figures, 9 tables, using axodraw.sty; minor modifications in the abstract, introduction and conclusion

    Four-quark energies in SU(2) lattice Monte Carlo using a tetrahedral geometry

    Full text link
    This contribution -- a continuation of earlier work -- reports on recent developments in the calculation and understanding of 4-quark energies generated using lattice Monte Carlo techniques.Comment: 3 pages, latex, no figures, contribution to Lattice 9

    Correlation of the ghost and the quark in the lattice Landau gauge QCD

    Get PDF
    Effects of the quark field on the ghost propagator of the lattice Landau gauge are investigated by using the quenched gauge configuration of SU(2) first copy and the parallel tempering (PT) gauge fixed samples, quenched SU(3) 56456^4 configuration and unquenched SU(3) configurations produced by the MILC collaboration. We measure color symmetric and color antisymmetric ghost propagator and the Binder cumulant of l1l^1 norm and l2l^2 norm of color antisymmetric ghost propagator and investigate deviation from that of Gaussian distribution. The dynamical quarks make color antisymmetric ghost propagator closer to Gaussian distribution and Kugo-Ojima color confinement parameter cc closer to 1

    The asymmetry of the dimension 2 gluon condensate: the zero temperature case

    Get PDF
    We provide an algebraic study of the local composite operators A_\mu A_\nu-\delta_{\mu\nu}/d A^2 and A^2, with d=4 the spacetime dimension. We prove that these are separately renormalizable to all orders in the Landau gauge. This corresponds to a renormalizable decomposition of the operator A_\mu A_\nu into its trace and traceless part. We present explicit results for the relevant renormalization group functions to three loop order, accompanied with various tests of these results. We then develop a formalism to determine the zero temperature effective potential for the corresponding condensates, and recover the already known result for \neq 0, together with <A_\mu A_\nu-\delta_{\mu\nu}/d A^2>=0, a nontrivial check that the approach is consistent with Lorentz symmetry. The formalism is such that it is readily generalizable to the finite temperature case, which shall allow a future analytical study of the electric-magnetic symmetry of the condensate, which received strong evidence from recent lattice simulations by Chernodub and Ilgenfritz, who related their results to 3 regions in the Yang-Mills phase diagram.Comment: 25 page
    corecore