37,974 research outputs found

    Dynamical stability and evolution of the discs of Sc galaxies

    Get PDF
    We examine the local stability of galactic discs against axisymmetric density perturbations with special attention to the different dynamics of the stellar and gaseous components. In particular the discs of the Milky Way and of NGC 6946 are studied. The Milky Way is shown to be stable, whereas the inner parts of NGC 6946, a typical Sc galaxy from the Kennicutt (1989) sample, are dynamically unstable. The ensuing dynamical evolution of the composite disc is studied by numerical simulations. The evolution is so fierce that the stellar disc heats up dynamically on a short time scale to such a degree, which seems to contradict the morphological appearance of the galaxy. The star formation rate required to cool the disc dynamically is estimated. Even if the star formation rate in NGC 6946 is at present high enough to meet this requirement, it is argued that the discs of Sc galaxies cannot sustain such a high star formation rate for longer periods.Comment: Latex, 11 pages, 8 figures, fig.7 available at anonymous ftp server ftp.lsw.uni-heidelberg.de under incoming/svlinden/fig7.ps, to appear in MNRA

    Recent developments in effective field theory

    Full text link
    We will give a short introduction to the one-nucleon sector of chiral perturbation theory and will address the issue of a consistent power counting and renormalization. We will discuss the infrared regularization and the extended on-mass-shell scheme. Both allow for the inclusion of further degrees of freedom beyond pions and nucleons and the application to higher-loop calculations. As applications we consider the chiral expansion of the nucleon mass to order O(q^6) and the inclusion of vector and axial-vector mesons in the calculation of nucleon form factors.Comment: 8 pages, 6 figures, invited talk given at International School of Nuclear Physics, 29th Course "Quarks in Hadrons and Nuclei", Erice, Sicily, 16 - 24 September 200

    Schnabl's L_0 Operator in the Continuous Basis

    Get PDF
    Following Schnabl's analytic solution to string field theory, we calculate the operators L0,L0{\cal L}_0,{\cal L}_0^\dagger for a scalar field in the continuous κ\kappa basis. We find an explicit and simple expression for them that further simplifies for their sum, which is block diagonal in this basis. We generalize this result for the bosonized ghost sector, verify their commutation relation and relate our expressions to wedge state representations.Comment: 1+16 pages. JHEP style. Typos correcte

    On Lagrangian tangent sweeps and Lagrangian outer billiards

    Full text link
    Given a Lagrangian submanifold in linear symplectic space, its tangent sweep is the union of its (affine) tangent spaces, and its tangent cluster is the result of parallel translating these spaces so that the foot point of each tangent space becomes the origin. This defines a multivalued map from the tangent sweep to the tangent cluster, and we show that this map is a local symplectomorphism (a well known fact, in dimension two). We define and study the outer billiard correspondence associated with a Lagrangian submanifold. Two points are in this correspondence if they belong to the same tangent space and are symmetric with respect to its foot pointe. We show that this outer billiard correspondence is symplectic and establish the existence of its periodic orbits. This generalizes the well studied outer billiard map in dimension two.Comment: revision as requested by the refere

    Polymer-Mode-Coupling Theory of Finite-Size-Fluctuation Effects in Entangled Solutions, Melts and Gels. I. General Formulation and Predictions

    Full text link
    The transport coefficients of dense polymeric fluids are approximately calculated from the microscopic intermolecular forces. The following finite molecular weight effects are discussed within the Polymer-Mode-Coupling theory (PMC) and compared to the corresponding reptation/ tube ideas: constraint release mechanism, spatial inhomogeneity of the entanglement constraints, and tracer polymer shape fluctuations. The entanglement corrections to the single polymer Rouse dynamics are shown to depend on molecular weight via the ratio N/N_e, where the entanglement degree of polymerization, N_e, can be measured from the plateau shear modulus. Two microscopically defined non-universal parameters, an entanglement strength 1/alpha and a length scale ratio, delta= xi_rho/b, where xi_rho and b are the density screening and entanglement length respectively, are shown to determine the reduction of the entanglement effects relative to the reptation- -like asymptotes of PMC theory. Large finite size effects are predicted for reduced degrees of polymerization up to N/N_e\le10^3. Effective power law variations for intermediate N/N_e of the viscosity, eta\sim N^x, and the diffusion constant, D\sim N^{-y}, can be explained with exponents significantly exceeding the asymptotic, reptation-like values, x\ge 3 and y\ge2, respectively. Extensions of the theory to treat tracer dielectric relaxation, and polymer transport in gels and other amorphous systems, are also presented.Comment: Latex, figures and styles files included; Macromolecules, in press (1997

    Nonsemisimple Fusion Algebras and the Verlinde Formula

    Full text link
    We find a nonsemisimple fusion algebra F_p associated with each (1,p) Virasoro model. We present a nonsemisimple generalization of the Verlinde formula which allows us to derive F_p from modular transformations of characters.Comment: LaTeX (amsart, xypic, times), 35p

    Axial, induced pseudoscalar, and pion-nucleon form factors in manifestly Lorentz-invariant chiral perturbation theory

    Get PDF
    We calculate the nucleon form factors G_A and G_P of the isovector axial-vector current and the pion-nucleon form factor G_piN in manifestly Lorentz-invariant baryon chiral perturbation theory up to and including order O(p^4). In addition to the standard treatment including the nucleon and pions, we also consider the axial-vector meson a_1 as an explicit degree of freedom. This is achieved by using the reformulated infrared renormalization scheme. We find that the inclusion of the axial-vector meson effectively results in one additional low-energy coupling constant that we determine by a fit to the data for G_A. The inclusion of the axial-vector meson results in an improved description of the experimental data for G_A, while the contribution to G_P is small.Comment: 21 pages, 9 figures, REVTeX
    corecore