7 research outputs found

    Design methodology for a block motion estimation IP core

    No full text

    Design Space Exploration for Efficient Data Intensive Computing on SoCs

    No full text
    International audienceFinding efficient implementations of data intensive applications, such as radar/sonar signal and image processing, on a system-on-chip is a very challenging problem due to increasing complexity and performance requirements of such applications. One major issue is the optimization of data transfer and storage microarchitecture, which is crucial in this context. In this chapter, we propose a comprehensive method to explore the mapping of high-level representations of applications into a customizable hardware accelerator. The high-level representation is given in a language named Array-OL. The customizable architecture uses FIFO queues and a double buffering mechanism to mask the latency of data transfers and external memory access. The mapping of a high-level representation onto a given architecture is achieved by applying loop transformations in Array-OL. A method based on integer partition is used to reduce the space of explored solutions. Our proposition aims at facilitating the inference of adequate hardware realizations for data intensive applications. It is illustrated on a case study consisting in implementing a hydrophone monitoring application

    System architecture of a European platform for health policy decision making::MIDAS

    No full text
    Abstract Background: Healthcare data is a rich yet underutilized resource due to its disconnected, heterogeneous nature. A means of connecting healthcare data and integrating it with additional open and social data in a secure way can support the monumental challenge policy-makers face in safely accessing all relevant data to assist in managing the health and wellbeing of all. The goal of this study was to develop a novel health data platform within the MIDAS (Meaningful Integration of Data Analytics and Services) project, that harnesses the potential of latent healthcare data in combination with open and social data to support evidence-based health policy decision-making in a privacy-preserving manner. Methods: The MIDAS platform was developed in an iterative and collaborative way with close involvement of academia, industry, healthcare staff and policy-makers, to solve tasks including data storage, data harmonization, data analytics and visualizations, and open and social data analytics. The platform has been piloted and tested by health departments in four European countries, each focusing on different region-specific health challenges and related data sources. Results: A novel health data platform solving the needs of Public Health decision-makers was successfully implemented within the four pilot regions connecting heterogeneous healthcare datasets and open datasets and turning large amounts of previously isolated data into actionable information allowing for evidence-based health policy-making and risk stratification through the application and visualization of advanced analytics. Conclusions: The MIDAS platform delivers a secure, effective and integrated solution to deal with health data, providing support for health policy decision-making, planning of public health activities and the implementation of the Health in All Policies approach. The platform has proven transferable, sustainable and scalable across policies, data and regions
    corecore