837 research outputs found

    Myosin II filament dynamics in actin networks revealed with interferometric scattering microscopy

    Get PDF
    The plasma membrane and the underlying cytoskeletal cortex constitute active platforms for a variety of cellular processes. Recent work has shown that the remodeling acto-myosin network modifies local membrane organization, but the molecular details are only partly understood due to difficulties with experimentally accessing the relevant time and length scales. Here, we use interferometric scattering (iSCAT) microscopy to investigate a minimal acto-myosin network linked to a supported lipid bilayer membrane. Using the magnitude of the interferometric contrast, which is proportional to molecular mass, and fast acquisition rates, we detect, and image individual membrane attached actin filaments diffusing within the acto-myosin network and follow individual myosin II filament dynamics. We quantify myosin II filament dwell times and processivity as functions of ATP concentration, providing experimental evidence for the predicted ensemble behavior of myosin head domains. Our results show how decreasing ATP concentrations lead to both increasing dwell times of individual myosin II filaments and a global change from a remodeling to a contractile state of the acto-myosin network

    Arrested Cracks in Nonlinear Lattice Models of Brittle Fracture

    Full text link
    We generalize lattice models of brittle fracture to arbitrary nonlinear force laws and study the existence of arrested semi-infinite cracks. Unlike what is seen in the discontinuous case studied to date, the range in driving displacement for which these arrested cracks exist is very small. Also, our results indicate that small changes in the vicinity of the crack tip can have an extremely large effect on arrested cracks. Finally, we briefly discuss the possible relevance of our findings to recent experiments.Comment: submitted to PRE, Rapid Communication

    Nonlinear lattice model of viscoelastic Mode III fracture

    Full text link
    We study the effect of general nonlinear force laws in viscoelastic lattice models of fracture, focusing on the existence and stability of steady-state Mode III cracks. We show that the hysteretic behavior at small driving is very sensitive to the smoothness of the force law. At large driving, we find a Hopf bifurcation to a straight crack whose velocity is periodic in time. The frequency of the unstable bifurcating mode depends on the smoothness of the potential, but is very close to an exact period-doubling instability. Slightly above the onset of the instability, the system settles into a exactly period-doubled state, presumably connected to the aforementioned bifurcation structure. We explicitly solve for this new state and map out its velocity-driving relation

    Adjunctive quetiapine for serotonin reuptake inhibitor-resistant obsessive-compulsive disorder: A meta-analysis of randomised controlled treatment trials

    Get PDF
    Small studies have shown positive effects from adding a variety of antipsychotic agents in patients with obsessive–compulsive disorder who are unresponsive to treatment with serotonin reuptake inhibitors. The evidence, however, is contradictory. This paper reports a meta-analysis of existing double-blind randomized placebo-controlled studies looking at the addition of the second-generation antipsychotic quetiapine in such cases. Three studies fulfilled the inclusion criteria. Altogether 102 individuals were subjected to analysis using Review Manager (4.2.7). The results showed evidence of efficacy for adjunctive quetiapine (< 400 mg/day) on the primary efficacy criterion, measured as changes from baseline in total Yale–Brown Obsessive Compulsive Scale scores (P = 0.008), the clinical significance of which was limited by between-study heterogeneity. The mechanism underlying the effect may involve serotonin and/or dopamine neurotransmission

    Steady-State Cracks in Viscoelastic Lattice Models

    Full text link
    We study the steady-state motion of mode III cracks propagating on a lattice exhibiting viscoelastic dynamics. The introduction of a Kelvin viscosity η\eta allows for a direct comparison between lattice results and continuum treatments. Utilizing both numerical and analytical (Wiener-Hopf) techniques, we explore this comparison as a function of the driving displacement Δ\Delta and the number of transverse sites NN. At any NN, the continuum theory misses the lattice-trapping phenomenon; this is well-known, but the introduction of η\eta introduces some new twists. More importantly, for large NN even at large Δ\Delta, the standard two-dimensional elastodynamics approach completely misses the η\eta-dependent velocity selection, as this selection disappears completely in the leading order naive continuum limit of the lattice problem.Comment: 27 pages, 8 figure

    Experimental Study of Parametric Autoresonance in Faraday Waves

    Full text link
    The excitation of large amplitude nonlinear waves is achieved via parametric autoresonance of Faraday waves. We experimentally demonstrate that phase locking to low amplitude driving can generate persistent high-amplitude growth of nonlinear waves in a dissipative system. The experiments presented are in excellent agreement with theory.Comment: 4 pages, 4 eps figures, to appear in Phys. Rev. Let

    Dynamical stability of the crack front line

    Full text link
    Dynamical stability of the crack front line that propagates between two plates is studied numerically using the simple two-dimensional mass-spring model. It is demonstrated that the straight front line is unstable for low speed while it becomes stable for high speed. For the uniform model, the roughness exponent in the slower speed region is fairly constant around 0.4 and there seems to be a rough-smooth transition at a certain speed. For the inhomogeneous case with quenched randomness, the transition is gradual.Comment: 14 pages, 7 figure

    Dynamic fields at the tip of sub-Rayleigh and supershear frictional rupture fronts

    Full text link
    The onset of frictional motion at the interface between two distinct bodies in contact is characterized by the propagation of dynamic rupture fronts. We combine friction experiments and numerical simulations to study the properties of these frictional rupture fronts. We extend previous analysis of slow and sub-Rayleigh rupture fronts and show that strain fields and the evolution of real contact area in the tip vicinity of supershear ruptures are well described by analytical fracture-mechanics solutions. Fracture-mechanics theory further allows us to determine long sought-after interface properties, such as local fracture energy and frictional peak strength. Both properties are observed to be roughly independent of rupture speed and mode of propagation. However, our study also reveals discrepancies between measurements and analytical solutions that appear as the rupture speed approaches the longitudinal wave speed. Further comparison with dynamic simulations illustrates that, in the supershear propagation regime, transient and geometrical (finite sample thickness) effects cause smaller near-tip strain amplitudes than expected from the fracture-mechanics theory. By showing good quantitative agreement between experiments, simulations and theory over the entire range of possible rupture speeds, we demonstrate that frictional rupture fronts are classic dynamic cracks despite residual friction.Comment: 20 pages including 11 figure

    Phase-Field Model of Mode III Dynamic Fracture

    Full text link
    We introduce a phenomenological continuum model for mode III dynamic fracture that is based on the phase-field methodology used extensively to model interfacial pattern formation. We couple a scalar field, which distinguishes between ``broken'' and ``unbroken'' states of the system, to the displacement field in a way that consistently includes both macroscopic elasticity and a simple rotationally invariant short scale description of breaking. We report two-dimensional simulations that yield steady-state crack motion in a strip geometry above the Griffith threshold.Comment: submitted to PR

    Crack Front Waves and the dynamics of a rapidly moving crack

    Full text link
    Crack front waves are localized waves that propagate along the leading edge of a crack. They are generated by the interaction of a crack with a localized material inhomogeneity. We show that front waves are nonlinear entities that transport energy, generate surface structure and lead to localized velocity fluctuations. Their existence locally imparts inertia, which is not incorporated in current theories of fracture, to initially "massless" cracks. This, coupled to crack instabilities, yields both inhomogeneity and scaling behavior within fracture surface structure.Comment: Embedded Latex file including 4 figure
    • …
    corecore