138 research outputs found

    Diffusion-Reorganized Aggregates: Attractors in Diffusion Processes?

    Full text link
    A process based on particle evaporation, diffusion and redeposition is applied iteratively to a two-dimensional object of arbitrary shape. The evolution spontaneously transforms the object morphology, converging to branched structures. Independently of initial geometry, the structures found after long time present fractal geometry with a fractal dimension around 1.75. The final morphology, which constantly evolves in time, can be considered as the dynamic attractor of this evaporation-diffusion-redeposition operator. The ensemble of these fractal shapes can be considered to be the {\em dynamical equilibrium} geometry of a diffusion controlled self-transformation process.Comment: 4 pages, 5 figure

    Optimal villi density for maximal oxygen uptake in the human placenta

    Full text link
    We present a stream-tube model of oxygen exchange inside a human placenta functional unit (a placentone). The effect of villi density on oxygen transfer efficiency is assessed by numerically solving the diffusion-convection equation in a 2D+1D geometry for a wide range of villi densities. For each set of physiological parameters, we observe the existence of an optimal villi density providing a maximal oxygen uptake as a trade-off between the incoming oxygen flow and the absorbing villus surface. The predicted optimal villi density 0.47±0.060.47\pm0.06 is compatible to previous experimental measurements. Several other ways to experimentally validate the model are also proposed. The proposed stream-tube model can serve as a basis for analyzing the efficiency of human placentas, detecting possible pathologies and diagnosing placental health risks for newborns by using routine histology sections collected after birth

    Screening effects in flow through rough channels

    Full text link
    A surprising similarity is found between the distribution of hydrodynamic stress on the wall of an irregular channel and the distribution of flux from a purely Laplacian field on the same geometry. This finding is a direct outcome from numerical simulations of the Navier-Stokes equations for flow at low Reynolds numbers in two-dimensional channels with rough walls presenting either deterministic or random self-similar geometries. For high Reynolds numbers, when inertial effects become relevant, the distribution of wall stresses on deterministic and random fractal rough channels becomes substantially dependent on the microscopic details of the walls geometry. In addition, we find that, while the permeability of the random channel follows the usual decrease with Reynolds, our results indicate an unexpected permeability increase for the deterministic case, i.e., ``the rougher the better''. We show that this complex behavior is closely related with the presence and relative intensity of recirculation zones in the reentrant regions of the rough channel.Comment: 4 pages, 5 figure

    Localization landscape theory of disorder in semiconductors. III. Application to carrier transport and recombination in light emitting diodes

    Full text link
    This paper introduces a novel method to account for quantum disorder effects into the classical drift-diffusion model of semiconductor transport through the localization landscape theory. Quantum confinement and quantum tunneling in the disordered system change dramatically the energy barriers acting on the perpendicular transport of heterostructures. In addition they lead to percolative transport through paths of minimal energy in the 2D landscape of disordered energies of multiple 2D quantum wells. This model solves the carrier dynamics with quantum effects self-consistently and provides a computationally much faster solver when compared with the Schr\"odinger equation resolution. The theory also provides a good approximation to the density of states for the disordered system over the full range of energies required to account for transport at room-temperature. The current-voltage characteristics modeled by 3-D simulation of a full nitride-based light-emitting diode (LED) structure with compositional material fluctuations closely match the experimental behavior of high quality blue LEDs. The model allows also a fine analysis of the quantum effects involved in carrier transport through such complex heterostructures. Finally, details of carrier population and recombination in the different quantum wells are given.Comment: 14 pages, 16 figures, 6 table

    Interplay between geometry and flow distribution in an airway tree

    Full text link
    Uniform fluid flow distribution in a symmetric volume can be realized through a symmetric branched tree. It is shown here, however, that the flow partitioning can be highly sensitive to deviations from exact symmetry if inertial effects are present. This is found by direct numerical simulation of the Navier-Stokes equations in a 3D tree geometry. The flow asymmetry is quantified and found to depend on the Reynolds number. Moreover, for a given Reynolds number, we show that the flow distribution depends on the aspect ratio of the branching elements as well as their angular arrangement. Our results indicate that physiological variability should be severely restricted in order to ensure uniform fluid distribution in a tree. This study suggests that any non-uniformity in the air flow distribution in human lungs should be influenced by the respiratory conditions, rest or hard exercise

    Exponential decay of Laplacian eigenfunctions in domains with branches

    Full text link
    The behavior of Laplacian eigenfunctions in domains with branches is investigated. If an eigenvalue is below a threshold which is determined by the shape of the branch, the associated eigenfunction is proved to exponentially decay inside the branch. The decay rate is twice the square root of the difference between the threshold and the eigenvalue. The derived exponential estimate is applicable for arbitrary domains in any spatial dimension. Numerical simulations illustrate and further extend the theoretical estimate

    Value of Urinary Albumin-to-Creatinine Ratio as a Predictor of Type 2 Diabetes in Pre-Diabetic Individuals

    Get PDF
    OBJECTIVE—The albumin-to-creatinine ratio (ACR) reflects urinary albumin excretion and is increasingly being accepted as an important clinical outcome predictor. Because of the great public health need for a simple and inexpensive test to identify individuals at high risk for developing type 2 diabetes, it has been suggested that the ACR might serve this purpose. We therefore determined whether the ACR could predict incident diabetes in a well-characterized cohort of pre-diabetic Americans
    corecore