230 research outputs found
Faster Existential FO Model Checking on Posets
We prove that the model checking problem for the existential fragment of
first-order (FO) logic on partially ordered sets is fixed-parameter tractable
(FPT) with respect to the formula and the width of a poset (the maximum size of
an antichain). While there is a long line of research into FO model checking on
graphs, the study of this problem on posets has been initiated just recently by
Bova, Ganian and Szeider (CSL-LICS 2014), who proved that the existential
fragment of FO has an FPT algorithm for a poset of fixed width. We improve upon
their result in two ways: (1) the runtime of our algorithm is
O(f(|{\phi}|,w).n^2) on n-element posets of width w, compared to O(g(|{\phi}|).
n^{h(w)}) of Bova et al., and (2) our proofs are simpler and easier to follow.
We complement this result by showing that, under a certain
complexity-theoretical assumption, the existential FO model checking problem
does not have a polynomial kernel.Comment: Paper as accepted to the LMCS journal. An extended abstract of an
earlier version of this paper has appeared at ISAAC'14. Main changes to the
previous version are improvements in the Multicoloured Clique part (Section
4
Upper and Lower Bounds on Long Dual-Paths in Line Arrangements
Given a line arrangement with lines, we show that there exists a
path of length in the dual graph of formed by its
faces. This bound is tight up to lower order terms. For the bicolored version,
we describe an example of a line arrangement with blue and red lines
with no alternating path longer than . Further, we show that any line
arrangement with lines has a coloring such that it has an alternating path
of length . Our results also hold for pseudoline
arrangements.Comment: 19 page
Boxicity of graphs on surfaces
The boxicity of a graph is the least integer for which there
exist interval graphs , , such that . Scheinerman proved in 1984 that outerplanar graphs have boxicity
at most two and Thomassen proved in 1986 that planar graphs have boxicity at
most three. In this note we prove that the boxicity of toroidal graphs is at
most 7, and that the boxicity of graphs embeddable in a surface of
genus is at most . This result yields improved bounds on the
dimension of the adjacency poset of graphs on surfaces.Comment: 9 pages, 2 figure
Drawing Planar Graphs with Few Geometric Primitives
We define the \emph{visual complexity} of a plane graph drawing to be the
number of basic geometric objects needed to represent all its edges. In
particular, one object may represent multiple edges (e.g., one needs only one
line segment to draw a path with an arbitrary number of edges). Let denote
the number of vertices of a graph. We show that trees can be drawn with
straight-line segments on a polynomial grid, and with straight-line
segments on a quasi-polynomial grid. Further, we present an algorithm for
drawing planar 3-trees with segments on an
grid. This algorithm can also be used with a small modification to draw maximal
outerplanar graphs with edges on an grid. We also
study the problem of drawing maximal planar graphs with circular arcs and
provide an algorithm to draw such graphs using only arcs. This is
significantly smaller than the lower bound of for line segments for a
nontrivial graph class.Comment: Appeared at Proc. 43rd International Workshop on Graph-Theoretic
Concepts in Computer Science (WG 2017
Combinatorial Properties of Triangle-Free Rectangle Arrangements and the Squarability Problem
We consider arrangements of axis-aligned rectangles in the plane. A geometric
arrangement specifies the coordinates of all rectangles, while a combinatorial
arrangement specifies only the respective intersection type in which each pair
of rectangles intersects. First, we investigate combinatorial contact
arrangements, i.e., arrangements of interior-disjoint rectangles, with a
triangle-free intersection graph. We show that such rectangle arrangements are
in bijection with the 4-orientations of an underlying planar multigraph and
prove that there is a corresponding geometric rectangle contact arrangement.
Moreover, we prove that every triangle-free planar graph is the contact graph
of such an arrangement. Secondly, we introduce the question whether a given
rectangle arrangement has a combinatorially equivalent square arrangement. In
addition to some necessary conditions and counterexamples, we show that
rectangle arrangements pierced by a horizontal line are squarable under certain
sufficient conditions.Comment: 15 pages, 13 figures, extended version of a paper to appear at the
International Symposium on Graph Drawing and Network Visualization (GD) 201
Contact Representations of Graphs in 3D
We study contact representations of graphs in which vertices are represented
by axis-aligned polyhedra in 3D and edges are realized by non-zero area common
boundaries between corresponding polyhedra. We show that for every 3-connected
planar graph, there exists a simultaneous representation of the graph and its
dual with 3D boxes. We give a linear-time algorithm for constructing such a
representation. This result extends the existing primal-dual contact
representations of planar graphs in 2D using circles and triangles. While
contact graphs in 2D directly correspond to planar graphs, we next study
representations of non-planar graphs in 3D. In particular we consider
representations of optimal 1-planar graphs. A graph is 1-planar if there exists
a drawing in the plane where each edge is crossed at most once, and an optimal
n-vertex 1-planar graph has the maximum (4n - 8) number of edges. We describe a
linear-time algorithm for representing optimal 1-planar graphs without
separating 4-cycles with 3D boxes. However, not every optimal 1-planar graph
admits a representation with boxes. Hence, we consider contact representations
with the next simplest axis-aligned 3D object, L-shaped polyhedra. We provide a
quadratic-time algorithm for representing optimal 1-planar graph with L-shaped
polyhedra
Precedence-constrained scheduling problems parameterized by partial order width
Negatively answering a question posed by Mnich and Wiese (Math. Program.
154(1-2):533-562), we show that P2|prec,|, the
problem of finding a non-preemptive minimum-makespan schedule for
precedence-constrained jobs of lengths 1 and 2 on two parallel identical
machines, is W[2]-hard parameterized by the width of the partial order giving
the precedence constraints. To this end, we show that Shuffle Product, the
problem of deciding whether a given word can be obtained by interleaving the
letters of other given words, is W[2]-hard parameterized by , thus
additionally answering a question posed by Rizzi and Vialette (CSR 2013).
Finally, refining a geometric algorithm due to Servakh (Diskretn. Anal. Issled.
Oper. 7(1):75-82), we show that the more general Resource-Constrained Project
Scheduling problem is fixed-parameter tractable parameterized by the partial
order width combined with the maximum allowed difference between the earliest
possible and factual starting time of a job.Comment: 14 pages plus appendi
Morphing Schnyder drawings of planar triangulations
We consider the problem of morphing between two planar drawings of the same
triangulated graph, maintaining straight-line planarity. A paper in SODA 2013
gave a morph that consists of steps where each step is a linear morph
that moves each of the vertices in a straight line at uniform speed.
However, their method imitates edge contractions so the grid size of the
intermediate drawings is not bounded and the morphs are not good for
visualization purposes. Using Schnyder embeddings, we are able to morph in
linear morphing steps and improve the grid size to
for a significant class of drawings of triangulations, namely the class of
weighted Schnyder drawings. The morphs are visually attractive. Our method
involves implementing the basic "flip" operations of Schnyder woods as linear
morphs.Comment: 23 pages, 8 figure
On Smooth Orthogonal and Octilinear Drawings: Relations, Complexity and Kandinsky Drawings
We study two variants of the well-known orthogonal drawing model: (i) the
smooth orthogonal, and (ii) the octilinear. Both models form an extension of
the orthogonal, by supporting one additional type of edge segments (circular
arcs and diagonal segments, respectively).
For planar graphs of max-degree 4, we analyze relationships between the graph
classes that can be drawn bendless in the two models and we also prove
NP-hardness for a restricted version of the bendless drawing problem for both
models. For planar graphs of higher degree, we present an algorithm that
produces bi-monotone smooth orthogonal drawings with at most two segments per
edge, which also guarantees a linear number of edges with exactly one segment.Comment: Appears in the Proceedings of the 25th International Symposium on
Graph Drawing and Network Visualization (GD 2017
- …
