329 research outputs found
Logics of Finite Hankel Rank
We discuss the Feferman-Vaught Theorem in the setting of abstract model
theory for finite structures. We look at sum-like and product-like binary
operations on finite structures and their Hankel matrices. We show the
connection between Hankel matrices and the Feferman-Vaught Theorem. The largest
logic known to satisfy a Feferman-Vaught Theorem for product-like operations is
CFOL, first order logic with modular counting quantifiers. For sum-like
operations it is CMSOL, the corresponding monadic second order logic. We
discuss whether there are maximal logics satisfying Feferman-Vaught Theorems
for finite structures.Comment: Appeared in YuriFest 2015, held in honor of Yuri Gurevich's 75th
birthday. The final publication is available at Springer via
http://dx.doi.org/10.1007/978-3-319-23534-9_1
Turing jumps through provability
Fixing some computably enumerable theory , the
Friedman-Goldfarb-Harrington (FGH) theorem says that over elementary
arithmetic, each formula is equivalent to some formula of the form
provided that is consistent. In this paper we give various
generalizations of the FGH theorem. In particular, for we relate
formulas to provability statements which
are a formalization of "provable in together with all true
sentences". As a corollary we conclude that each is
-complete. This observation yields us to consider a recursively
defined hierarchy of provability predicates which look a lot
like except that where calls upon the
oracle of all true sentences, the recursively
calls upon the oracle of all true sentences of the form . As such we obtain a `syntax-light' characterization of
definability whence of Turing jumps which is readily extended
beyond the finite. Moreover, we observe that the corresponding provability
predicates are well behaved in that together they provide a
sound interpretation of the polymodal provability logic
Takeuti's Well-Ordering Proof: Finitistically Fine?
If it could be shown that one of Gentzen's consistency proofs for pure number theory could be shown to be finitistically acceptable, an important part of Hilbert's program would be vindicated. This paper focuses on whether the transfinite induction on ordinal notations needed for Gentzen's second proof can be finitistically justified. In particular, the focus is on Takeuti's purportedly finitistically acceptable proof of the well-ordering of ordinal notations in Cantor normal form.
The paper begins with a historically informed discussion of finitism and its limits, before introducing Gentzen and Takeuti's respective proofs. The rest of the paper is dedicated to investigating the finitistic acceptability of Takeuti's proof, including a small but important fix to that proof. That discussion strongly suggests that there is a philosophically interesting finitist standpoint that Takeuti's proof, and therefore Gentzen's proof, conforms to
The Wonder of Colors and the Principle of Ariadne
The Principle of Ariadne, formulated in 1988 ago by Walter Carnielli
and Carlos Di Prisco and later published in 1993, is an infinitary principle that is independent of the Axiom of Choice in ZF, although it can be consistently added to
the remaining ZF axioms. The present paper surveys, and motivates, the foundational importance of the Principle of Ariadne
and proposes the Ariadne Game, showing that the Principle of Ariadne,
corresponds precisely
to a winning strategy for the Ariadne Game. Some relations to other
alternative. set-theoretical principles
are also briefly discussed
A Computation of the Maximal Order Type of the Term Ordering on Finite Multisets
We give a sharpening of a recent result of Aschenbrenner and Pong about the maximal order type of the term ordering on the finite multisets over a wpo. Moreover we discuss an approach to compute maximal order types of well-partial orders which are related to tree embeddings
Takeuti's Well-Ordering Proof: Finitistically Fine?
If it could be shown that one of Gentzen's consistency proofs for pure number theory could be shown to be finitistically acceptable, an important part of Hilbert's program would be vindicated. This paper focuses on whether the transfinite induction on ordinal notations needed for Gentzen's second proof can be finitistically justified. In particular, the focus is on Takeuti's purportedly finitistically acceptable proof of the well-ordering of ordinal notations in Cantor normal form.
The paper begins with a historically informed discussion of finitism and its limits, before introducing Gentzen and Takeuti's respective proofs. The rest of the paper is dedicated to investigating the finitistic acceptability of Takeuti's proof, including a small but important fix to that proof. That discussion strongly suggests that there is a philosophically interesting finitist standpoint that Takeuti's proof, and therefore Gentzen's proof, conforms to
From Euclidean Geometry to Knots and Nets
This document is the Accepted Manuscript of an article accepted for publication in Synthese. Under embargo until 19 September 2018. The final publication is available at Springer via https://doi.org/10.1007/s11229-017-1558-x.This paper assumes the success of arguments against the view that informal mathematical proofs secure rational conviction in virtue of their relations with corresponding formal derivations. This assumption entails a need for an alternative account of the logic of informal mathematical proofs. Following examination of case studies by Manders, De Toffoli and Giardino, Leitgeb, Feferman and others, this paper proposes a framework for analysing those informal proofs that appeal to the perception or modification of diagrams or to the inspection or imaginative manipulation of mental models of mathematical phenomena. Proofs relying on diagrams can be rigorous if (a) it is easy to draw a diagram that shares or otherwise indicates the structure of the mathematical object, (b) the information thus displayed is not metrical and (c) it is possible to put the inferences into systematic mathematical relation with other mathematical inferential practices. Proofs that appeal to mental models can be rigorous if the mental models can be externalised as diagrammatic practice that satisfies these three conditions.Peer reviewe
Termination Casts: A Flexible Approach to Termination with General Recursion
This paper proposes a type-and-effect system called Teqt, which distinguishes
terminating terms and total functions from possibly diverging terms and partial
functions, for a lambda calculus with general recursion and equality types. The
central idea is to include a primitive type-form "Terminates t", expressing
that term t is terminating; and then allow terms t to be coerced from possibly
diverging to total, using a proof of Terminates t. We call such coercions
termination casts, and show how to implement terminating recursion using them.
For the meta-theory of the system, we describe a translation from Teqt to a
logical theory of termination for general recursive, simply typed functions.
Every typing judgment of Teqt is translated to a theorem expressing the
appropriate termination property of the computational part of the Teqt term.Comment: In Proceedings PAR 2010, arXiv:1012.455
- …