26 research outputs found

    A multi-modal stereo microscope based on a spatial light modulator

    Get PDF
    Spatial Light Modulators (SLMs) can emulate the classic microscopy techniques, including differential interference (DIC) contrast and (spiral) phase contrast. Their programmability entails the benefit of flexibility or the option to multiplex images, for single-shot quantitative imaging or for simultaneous multi-plane imaging (depth-of-field multiplexing). We report the development of a microscope sharing many of the previously demonstrated capabilities, within a holographic implementation of a stereo microscope. Furthermore, we use the SLM to combine stereo microscopy with a refocusing filter and with a darkfield filter. The instrument is built around a custom inverted microscope and equipped with an SLM which gives various imaging modes laterally displaced on the same camera chip. In addition, there is a wide angle camera for visualisation of a larger region of the sample

    Orientation-selective spiral-phase contrast microscopy

    No full text

    Holographic ghost imaging and the violation of a bell inequality

    Get PDF
    We demonstrate the contrast enhancement of images within a ghost-imaging system by use of nonlocal phase filters. We use parametric down-conversion as the two-photon light source and two separated phase modulators, in the signal and idler arms which represent different phase filters and objects, respectively. We obtain edge enhanced images as a direct consequence of the quantum correlations in the orbital angular momentum (OAM) of the down-converted photon pairs. For phase objects, with differently orientated edges, we show a violation of a Bell-type inequality for an OAM subspace, thereby unambiguously revealing the quantum nature of our ghost-imaging arrangement

    Tunable ultraviolet vortex source based on a continuous-wave optical parametric oscillator

    No full text
    We report a continuous-wave (cw) optical parametric oscillator (OPO) generating optical vortices tunable in the ultraviolet (UV). Based on MgO:sPPLT as the nonlinear crystal, the singly resonant OPO is pumped by a cw vortex beam in the green, and deploying intracavity sum-frequency generation (SFG) between the undepleted pump and the Gaussian resonant signal in the crystal of BiB3O6, it can generate optical vortices of order, ??????=1 and 2, tunable across 332�344 nm in the UV with a maximum power of 12 mW. Due to conservation of orbital angular momentum in the parametric process, the OPO also produces a non-resonant idler output beam in a vortex spatial profile of order ????=1 and 2, identical to the pump vortex, with the signal beam in Gaussian distribution. The idler vortex is tunable across 1172�1338 nm with maximum output power of 1.3 W.by Varun Sharma, G. K. Samanta, S. Chaitanya Kumar, R. P. Singh, and M. Ebrahim-Zade
    corecore