65 research outputs found

    Sub-Poissonian statistics in order-to-chaos transition

    Full text link
    We study the phenomena at the overlap of quantum chaos and nonclassical statistics for the time-dependent model of nonlinear oscillator. It is shown in the framework of Mandel Q-parameter and Wigner function that the statistics of oscillatory excitation number is drastically changed in order-to chaos transition. The essential improvement of sub-Poissonian statistics in comparison with an analogous one for the standard model of driven anharmonic oscillator is observed for the regular operational regime. It is shown that in the chaotic regime the system exhibits the range of sub- and super-Poissonian statistics which alternate one to other depending on time intervals. Unusual dependence of the variance of oscillatory number on the external noise level for the chaotic dynamics is observed.Comment: 9 pages, RevTeX, 14 figure

    Observation of power-law scaling for phase transitions in linear trapped ion crystals

    Full text link
    We report an experimental confirmation of the power-law relationship between the critical anisotropy parameter and ion number for the linear-to-zigzag phase transition in an ionic crystal. Our experiment uses laser cooled calcium ions confined in a linear radio-frequency trap. Measurements for up to 10 ions are in good agreement with theoretical and numeric predictions. Implications on an upper limit to the size of data registers in ion trap quantum computers are discussed.Comment: Physical Review Letters in press, 4 pages, 4 figure

    Chaos in a double driven dissipative nonlinear oscillator

    Get PDF
    We propose an anharmonic oscillator driven by two periodic forces of different frequencies as a new time-dependent model for investigating quantum dissipative chaos. Our analysis is done in the frame of statistical ensemble of quantum trajectories in quantum state diffusion approach. Quantum dynamical manifestation of chaotic behavior, including the emergence of chaos, properties of strange attractors, and quantum entanglement are studied by numerical simulation of ensemble averaged Wigner function and von Neumann entropy.Comment: 9 pages, 18 figure

    Designing spin-spin interactions with one and two dimensional ion crystals in planar micro traps

    Full text link
    We discuss the experimental feasibility of quantum simulation with trapped ion crystals, using magnetic field gradients. We describe a micro structured planar ion trap, which contains a central wire loop generating a strong magnetic gradient of about 20 T/m in an ion crystal held about 160 \mu m above the surface. On the theoretical side, we extend a proposal about spin-spin interactions via magnetic gradient induced coupling (MAGIC) [Johanning, et al, J. Phys. B: At. Mol. Opt. Phys. 42 (2009) 154009]. We describe aspects where planar ion traps promise novel physics: Spin-spin coupling strengths of transversal eigenmodes exhibit significant advantages over the coupling schemes in longitudinal direction that have been previously investigated. With a chip device and a magnetic field coil with small inductance, a resonant enhancement of magnetic spin forces through the application of alternating magnetic field gradients is proposed. Such resonantly enhanced spin-spin coupling may be used, for instance, to create Schr\"odinger cat states. Finally we investigate magnetic gradient interactions in two-dimensional ion crystals, and discuss frustration effects in such two-dimensional arrangements.Comment: 20 pages, 13 figure

    Frequency of GP communication addressing the patient's resources and coping strategies in medical interviews: a video-based observational study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is increasing focus on patient-centred communicative approaches in medical consultations, but few studies have shown the extent to which patients' positive coping strategies and psychological assets are addressed by general practitioners (GPs) on a regular day at the office. This study measures the frequency of GPs' use of questions and comments addressing their patients' coping strategies or resources.</p> <p>Methods</p> <p>Twenty-four GPs were video-recorded in 145 consultations. The consultations were coded using a modified version of the Roter Interaction Analysis System. In this study, we also developed four additional coding categories based on cognitive therapy and solution-focused therapy: attribution, resources, coping, and solution-focused techniques.</p> <p>The reliability between coders was established, a factor analysis was applied to test the relationship between the communication categories, and a tentative validating exercise was performed by reversed coding.</p> <p>Results</p> <p>Cohen's kappa was 0.52 between coders. Only 2% of the utterances could be categorized as resource or coping oriented. Six GPs contributed 59% of these utterances. The factor analysis identified two factors, one task oriented and one patient oriented.</p> <p>Conclusion</p> <p>The frequency of communication about coping and resources was very low. Communication skills training for GPs in this field is required. Further validating studies of this kind of measurement tool are warranted.</p

    Ion-trap quantum information processing: experimental status

    Full text link
    Atomic ions trapped in ultra-high vacuum form an especially well-understood and useful physical system for quantum information processing. They provide excellent shielding of quantum information from environmental noise, while strong, well-controlled laser interactions readily provide quantum logic gates. A number of basic quantum information protocols have been demonstrated with trapped ions. Much current work aims at the construction of large-scale ion-trap quantum computers using complex microfabricated trap arrays. Several groups are also actively pursuing quantum interfacing of trapped ions with photons.Comment: review article for Frontiers of Physics replace corrupted TeX fil

    The Lunar Gravity Ranging System for the Gravity Recovery and Interior Laboratory (GRAIL) Mission

    No full text
    • …
    corecore