211 research outputs found

    Silicon straight tube fluid density sensor

    Get PDF
    In this paper, a micromachined silicon straight tube is tested as a fluid density sensor. In comparison with other density measurement techniques, the use of micromachined tubes require small sample volumes and allows continuous monitoring of the fluid density in microfluidic systems. Different vibration modes of the sensor were detected and calibrated using a laser Doppler vibrometer (LDV). Linearity, simplicity, the straightforward fabrication and evaluation, the low flow restriction and reduced risk of trapping gas in the sensor due the absence of corners are the design's main advantages. The ability of the sensor to measure density of multiphase fluids and provide accurate results independent of other fluid parameters, allows it to be used in varying fields such as the biomedical, pharmaceutical and petrochemical industries

    A silicon straight tube fluid density sensor

    Get PDF
    In this paper, a new and simple silicon straight tube is tested as a fluid density sensor. The tube structure has a hexagonal cross section. The fabrication process consists of anisotropic silicon etching and silicon fusion bonding. A tube structure with a length of 2.65 cm was tested. The sample volume is 9.3 μL. The first three modes of vibrations were investigated with a laser Doppler vibrometer for air and five liquid mixtures. The fluid density sensitivity of each mode was measured and the average was −256 ± 6 ppm (kg m−3)−1 around the density of water. The density of an unknown fluid can be continuously monitored using this sensor by measuring the resonance frequency of one of the vibration modes and extracting the density from the calibration curves

    Silicon straight tube fluid density sensor

    Get PDF
    In this paper, a micromachined silicon straight tube is tested as a fluid density sensor. In comparison with other density measurement techniques, the use of micromachined tubes require small sample volumes and allows continuous monitoring of the fluid density in microfluidic systems. Different vibration modes of the sensor were detected and calibrated using a laser Doppler vibrometer (LDV). Linearity, simplicity, the straightforward fabrication and evaluation, the low flow restriction and reduced risk of trapping gas in the sensor due the absence of corners are the design's main advantages. The ability of the sensor to measure density of multiphase fluids and provide accurate results independent of other fluid parameters, allows it to be used in varying fields such as the biomedical, pharmaceutical and petrochemical industries

    Low temperature and cost-effective growth of vertically aligned carbon nanofibers using spin-coated polymer-stabilized palladium nanocatalysts

    Get PDF
    We describe a fast and cost-effective process for the growth of carbon nanofibers (CNFs) at a temperature compatible with complementary metal oxide semiconductor technology, using highly stable polymer-Pd nanohybrid colloidal solutions of palladium catalyst nanoparticles (NPs). Two polymer-Pd nanohybrids, namely poly(lauryl methacrylate)-block-poly((2-acetoacetoxy) ethyl methacrylate)/Pd (LauMA(x)-b-AEMA(y)/Pd) and polyvinylpyrrolidone/Pd were prepared in organic solvents and spin-coated onto silicon substrates. Subsequently, vertically aligned CNFs were grown on these NPs by plasma enhanced chemical vapor deposition at different temperatures. The electrical properties of the grown CNFs were evaluated using an electrochemical method, commonly used for the characterization of supercapacitors. The results show that the polymer-Pd nanohybrid solutions offer the optimum size range of palladium catalyst NPs enabling the growth of CNFs at temperatures as low as 350 degrees C. Furthermore, the CNFs grown at such a low temperature are vertically aligned similar to the CNFs grown at 550 degrees C. Finally the capacitive behavior of these CNFs was similar to that of the CNFs grown at high temperature assuring the same electrical properties thus enabling their usage in different applications such as on-chip capacitors, interconnects, thermal heat sink and energy storage solutions

    Micromachined contactless pin-flange adapter for robust high-frequency measurements

    Get PDF
    We present the first micromachined double-sided contactless WR03 pin-flange adapter for 220-325 GHz based on gap waveguide technology. The pin-flange adapter is used to avoid leakage at the interface of two waveguides even when a gap between them is present and can be fitted onto any standard WR03 waveguide flange. Tolerance measurements were performed with gaps ranging from 30-100 mu m. The performance of the micromachined pin flange has been compared to a milled pin flange, a choke flange and to standard waveguide connections. The micromachined pin flange is shown to have better performance than the standard connection and similar performance to the milled pin flange and choke flange. The benefits of micromachining over milling are the possibility to mass produce pin flanges and the better accuracy in the 2D design. Measurements were performed with and without screws fixing the flanges. The flanges have also been applied to measure two devices, a straight rectangular waveguide of 1.01 inch and a ridge gap resonator. In all cases, the micromachined pin flange performed flawlessly while the standard flange experienced significant losses at already small gaps

    Realizing a 140\ua0GHz Gap Waveguide–Based Array Antenna by Low-Cost Injection Molding and Micromachining

    Get PDF
    This paper presents a novel micromachining process to fabricate a 140\ua0GHz planar antenna based on gap waveguide technology to be used in the next-generation backhauling links. The 140\ua0GHz planar array antenna consists of three layers, all of which have been fabricated using polymer-based microfabrication and injection molding. The 140\ua0GHz antenna has the potential to be used as an element in a bigger 3D array in a line-of-sight (LOS) multiple input multiple output (MIMO) configuration to boost the network capacity. In this work, we focus on the fabrication of a single antenna array element based on gap waveguide technology. Depending on the complexity of each antenna layer’s design, three different micromachining techniques, SU8 fabrication, polydimethylsiloxane (PDMS) molding, and injection molding of the polymer (OSTEMER), together with gold (Au) coating, have been utilized to fabricate a single 140\ua0GHz planar array antenna. The input reflection coefficient was measured to be below − 11\ua0dB over a 14% bandwidth from 132 to 152\ua0GHz, and the antenna gain was measured to be 31 dBi at 140\ua0GHz, both of which are in good agreement with the simulations

    Складові компоненти мовної особистості в контексті міжкультурної комунікації

    Get PDF
    Стаття присвячена аналізу складових компонентів мовної особистості в контексті міжкультурної комунікації, їх взаємодії та функціонуванню з точки зору прагматичної спрямованості мовленнєвого впливу. Детально розглядаються три рівні структури мовної особистості (структурно-мовний, лінгвокогнітивний ті мотиваційний) із визначенням специфіки їхніх складових компонентів.Статья посвящена анализу составляющих компонентов языковой личности в контексте межкультурной коммуникаций, их взаимодействию и функционированию с точки зрения прагматической направленности речевого воздействия. Детально рассматриваются три уровня структуры языковой личности (структурно-языковой, лингвокогнитивный и мотивационный) с последующим определением специфики их составляющих компонентов.The article is dedicated to the linguistic personality constituent components' analysis in terms of cross-cultural communication, their interaction and functioning with the speech influence pragmatic orientation taken into consideration. The three levels of the linguistic personality (that is, structural linguistic, lingo cognitive and motivation ones) are under analysis with the following their constituent components specificity determinatio

    Cell Death by SecTRAPs: Thioredoxin Reductase as a Prooxidant Killer of Cells

    Get PDF
    BACKGROUND: SecTRAPs (selenium compromised thioredoxin reductase-derived apoptotic proteins) can be formed from the selenoprotein thioredoxin reductase (TrxR) by targeting of its selenocysteine (Sec) residue with electrophiles, or by its removal through C-terminal truncation. SecTRAPs are devoid of thioredoxin reductase activity but can induce rapid cell death in cultured cancer cell lines by a gain of function. PRINCIPAL FINDINGS: Both human and rat SecTRAPs killed human A549 and HeLa cells. The cell death displayed both apoptotic and necrotic features. It did not require novel protein synthesis nor did it show extensive nuclear fragmentation, but it was attenuated by use of caspase inhibitors. The redox active disulfide/dithiol motif in the N-terminal domain of TrxR had to be maintained for manifestation of SecTRAP cytotoxicity. Stopped-flow kinetics showed that NADPH can reduce the FAD moiety in SecTRAPs at similar rates as in native TrxR and purified SecTRAPs could maintain NADPH oxidase activity, which was accelerated by low molecular weight substrates such as juglone. In a cellular context, SecTRAPs triggered extensive formation of reactive oxygen species (ROS) and consequently antioxidants could protect against the cell killing by SecTRAPs. CONCLUSIONS: We conclude that formation of SecTRAPs could contribute to the cytotoxicity seen upon exposure of cells to electrophilic agents targeting TrxR. SecTRAPs are prooxidant killers of cells, triggering mechanisms beyond those of a mere loss of thioredoxin reductase activity

    The Expression of BAFF, APRIL and TWEAK Is Altered in Eczema Skin but Not in the Circulation of Atopic and Seborrheic Eczema Patients

    Get PDF
    The TNF family cytokines BAFF (B-cell activating factor of the TNF family) and APRIL (a proliferation-inducing ligand) are crucial survival factors for B-cell development and activation. B-cell directed treatments have been shown to improve atopic eczema (AE), suggesting the involvement of these cytokines in the pathogenesis of AE. We therefore analyzed the expression of these TNF cytokines in AE, seborrheic eczema (SE) and healthy controls (HC). The serum/plasma concentration of BAFF, APRIL and a close TNF member TWEAK (TNF-like weak inducer of apoptosis) was measured by ELISA. The expression of these cytokines and their receptors in skin was analyzed by quantitative RT-PCR and immunofluorescence. Unlike other inflammatory diseases including autoimmune diseases and asthma, the circulating levels of BAFF, APRIL and TWEAK were not elevated in AE or SE patients compared with HCs and did not correlate with the disease severity or systemic IgE levels in AE patients. Interestingly, we found that the expression of these cytokines and their receptors was altered in positive atopy patch test reactions in AE patients (APT-AE) and in lesional skin of AE and SE patients. The expression of APRIL was decreased and the expression of BAFF was increased in eczema skin of AE and SE, which could contribute to a reduced negative regulatory input on B-cells. This was found to be more pronounced in APT-AE, the initiating acute stage of AE, which may result in dysregulation of over-activated B-cells. Furthermore, the expression levels of TWEAK and its receptor positively correlated to each other in SE lesions, but inversely correlated in AE lesions. These results shed light on potential pathogenic roles of these TNF factors in AE and SE, and pinpoint a potential of tailored treatments towards these factors in AE and SE
    corecore