14 research outputs found
The effect of a high-polyphenol Mediterranean diet (Green-MED) combined with physical activity on age-related brain atrophy: The Dietary Intervention Randomized Controlled Trial Polyphenols Unprocessed Study (DIRECT PLUS)
Background: The effect of diet on age-related brain atrophy is largely unproven. Objectives: We aimed to explore the effect of a Mediterranean diet (MED) higher in polyphenols and lower in red/processed meat (Green-MED diet) on age-related brain atrophy. Methods: This 18-mo clinical trial longitudinally measured brain structure volumes by MRI using hippocampal occupancy score (HOC) and lateral ventricle volume (LVV) expansion score as neurodegeneration markers. Abdominally obese/dyslipidemic participants were randomly assigned to follow 1) healthy dietary guidelines (HDG), 2) MED, or 3) Green-MED diet. All subjects received free gym memberships and physical activity guidance. Both MED groups consumed 28 g walnuts/d (+440 mg/d polyphenols). The Green-MED group consumed green tea (3-4 cups/d) and Mankai (Wolffia-globosa strain, 100 g frozen cubes/d) green shake (+800 mg/d polyphenols). Results: Among 284 participants (88% men; mean age: 51 y; BMI: 31.2 kg/m2; APOE-ε4 genotype = 15.7%), 224 (79%) completed the trial with eligible whole-brain MRIs. The pallidum (-4.2%), third ventricle (+3.9%), and LVV (+2.2%) disclosed the largest volume changes. Compared with younger participants, atrophy was accelerated among those ≥50 y old (HOC change: -1.0% ± 1.4% compared with -0.06% ± 1.1%; 95% CI: 0.6%, 1.3%; P Conclusions: A Green-MED (high-polyphenol) diet, rich in Mankai, green tea, and walnuts and low in red/processed meat, is potentially neuroprotective for age-related brain atrophy.This trial was registered at clinicaltrials.gov as NCT03020186
Plasma‐Enhanced Chemical Vapor Deposition of Silicon Dioxide Using Tetraethylorthosilicate (TEOS)
Low temperature chemical vapor deposition of tungsten carbide for copper diffusion barriers
Intrinsic surface structures and their roles in the catalysis and photo-catalysis of microcrystalline mgo catalysts
Three-Dimensional Structural Model of Chicken Liver Sulfite Oxidase in its Activated Form
Adsorption of Sulfite Oxidase on Self-Assembled Monolayers from Molecular Dynamics Simulations
Sulfite oxidase (SO) is an enzyme catalyzing the terminal step of the metabolism of sulfur-containing amino acids that is essential for almost all living organisms. The catalytic activity of SO in vertebrates strongly depends on the efficiency of the intramolecular electron transfer (JET) between the catalytic Moco domain and the cytochrome b5 (cyt b5) domain. The LET process is assumed to be mediated by large domain motions of the cyt b5 domains within the enzyme. Thus, the interaction of SO with charged surfaces may affect the mobility of the cyt b5 domain required for IET and consequently hinder SO activation. In this study, we present a molecular dynamics approach to investigating the ionic strength dependence of the initial surface adsorption of SO in two different conformations-the crystallographic structure and the model structure for an activated SO-onto mixed amino- and hydroxyl-terminated SAMs. The results show for both conformations at low ionic strengths a strong adsorption of the cyt b5 units onto the SAM, which inhibits the domain motion event required for IET. Under higher ion concentrations, however, the interaction with the surface is weakened by the negatively charged ions acting as a buffer and competing in adsorption with the cathodic cyt b5 domains. This competition prevents the immobilization of the cytochrome b5 units onto the surface, allowing the intramolecular domain motions favoring JET. Our predictions support the interpretation of recent experimental spectroelectrochemical studies on SO
Pulsed EPR investigations of the Mo(V) centers of the R55Q and R55M variants of sulfite dehydrogenase from Starkeya novella
Continuous-wave and pulsed electron paramagnetic resonance (EPR) spectroscopy have been used to characterize two variants of bacterial sulfite dehydrogenase (SDH) from Starkeya novella in which the conserved active-site arginine residue (R55) is replaced by a neutral amino acid residue. Substitution by the hydrophobic methionine residue (SDH(R55M)) has essentially no effect on the pH dependence of the EPR properties of the Mo(V) center, even though the X-ray structure of this variant shows that the methionine residue is rotated away from the Mo center and a sulfate anion is present in the active-site pocket (Bailey et al. in J Biol Chem 284:2053-2063, 2009). For SDH(R55M) only the high-pH form is observed, and samples prepared in H(2) (17)O-enriched buffer show essentially the same (17)O hyperfine interaction and nuclear quadrupole interaction parameters as SDH(WT) enzyme. However, the pH dependence of the EPR spectra of SDH(R55Q), in which the positively charged arginine is replaced by the neutral hydrophilic glutamine, differs significantly from that of SDH(WT). For SDH(R55Q) the blocked form with bound sulfate is generated at low pH, as verified by (33)S couplings observed upon reduction with (33)S-labeled sulfite. This observation of bound sulfate for SDH(R55Q) supports our previous hypothesis that sulfite-oxidizing enzymes can exhibit multiple pathways for electron transfer and product release (Emesh et al. in Biochemistry 48:2156-2163, 2009). At pH a parts per thousand yen 8 the high-pH form dominates for SDH(R55Q)
