339 research outputs found

    Survival after postoperative morbidity: a longitudinal observational cohort study

    Get PDF
    Prolonged morbidity after surgery is associated with a risk of premature death for a longer duration than perhaps is commonly thought; however, this risk falls with time. We suggest that prolonged postoperative morbidity measured in this way may be a valid indicator of the quality of surgical healthcare. Our findings reinforce the importance of research and quality improvement initiatives aimed at reducing the duration and severity of postoperative complication

    Patients' preferences for the management of non-metastatic prostate cancer: discrete choice experiment

    Get PDF
    Objective To establish which attributes of conservative treatments for prostate cancer are most important to men. Design Discrete choice experiment. Setting Two London hospitals. Participants 129 men with non-metastatic prostate cancer, mean age 70 years; 69 of 118 (58%) with T stage 1 or 2 cancer at diagnosis. Main outcome measures Men's preferences for, and trade-offs between, the attributes of diarrhoea, hot flushes, ability to maintain an erection, breast swelling or tenderness, physical energy, sex drive, life expectancy, and out of pocket expenses. Results The men's responses to changes in attributes were all statistically significant. When asked to assume a starting life expectancy of five years, the men were willing to make trade-offs between life expectancy and side effects. On average, they were most willing to give up life expectancy to avoid limitations in physical energy (mean three months) and least willing to trade life expectancy to avoid hot flushes (mean 0.6 months to move from a moderate to mild level or from mild to none). Conclusions Men with prostate cancer are willing to participate in a relatively complex exercise that weighs up the advantages and disadvantages of various conservative treatments for their condition. They were willing to trade off some life expectancy to be relieved of the burden of troublesome side effects such as limitations in physical energy

    Benefit, Harm, and Cost-effectiveness Associated With Magnetic Resonance Imaging Before Biopsy in Age-based and Risk-stratified Screening for Prostate Cancer

    Get PDF
    IMPORTTANCE: If magnetic resonance imaging (MRI) mitigates overdiagnosis of prostate cancer while improving the detection of clinically significant cases, including MRI in a screening program for prostate cancer could be considered. OBJECTIVE: To evaluate the benefit-harm profiles and cost-effectiveness associated with MRI before biopsy compared with biopsy-first screening for prostate cancer using age-based and risk-stratified screening strategies. DESIGN, SETTING AND PARTICIPANTS: This decision analytical model used a life-table approach and was conducted between December 2019 and July 2020. A hypothetical cohort of 4.48 million men in England aged 55 to 69 years were analyzed and followed-up to 90 years of age. EXPOSURES: No screening, age-based screening, and risk-stratified screening in the hypothetical cohort. Age-based screening consisted of screening every 4 years with prostate-specific antigen between the ages of 55 and 69 years. Risk-stratified screening used age and polygenic risk profiles. MAIN OUTCOMES AND MEASURES: The benefit-harm profile (deaths from prostate cancer, quality-adjusted life-years, overdiagnosis, and biopsies) and cost-effectiveness (net monetary benefit, from a health care system perspective) were analyzed. Both age-based and risk-stratified screening were evaluated using a biopsy-first and an MRI-first diagnostic pathway. Results were derived from probabilistic analyses and were discounted at 3.5% per annum. RESULTS: The hypothetical cohort included 4.48 million men in England, ranging in age from 55 to 69 years (median, 62 years). Compared with biopsy-first age-based screening, MRI-first age-based screening was associated with 0.9% (1368; 95% uncertainty interval [UI], 1370-1409) fewer deaths from prostate cancer, 14.9% (12 370; 95% UI, 11 100-13 670) fewer overdiagnoses, and 33.8% (650 500; 95% UI, 463 200-907 000) fewer biopsies. At 10-year absolute risk thresholds of 2% and 10%, MRI-first risk-stratified screening was associated with between 10.4% (7335; 95% UI, 6630-8098) and 72.6% (51 250; 95% UI, 46 070-56 890) fewer overdiagnosed cancers, respectively, and between 21.7% fewer MRIs (412 100; 95% UI, 411 400-412 900) and 53.5% fewer biopsies (1 016 000; 95% UI, 1 010 000-1 022 000), respectively, compared with MRI-first age-based screening. The most cost-effective strategies at willingness-to-pay thresholds of £20 000 (US 26000)and£30000(US26 000) and £30 000 (US 39 000) per quality-adjusted life-year gained were MRI-first risk-stratified screening at 10-year absolute risk thresholds of 8.5% and 7.5%, respectively. CONCLUSIONS AND RELEVANCE: In this decision analytical model of a hypothetical cohort, an MRI-first diagnostic pathway was associated with an improvement in the benefit-harm profile and cost-effectiveness of screening for prostate cancer compared with biopsy-first screening. These improvements were greater when using risk-stratified screening based on age and polygenic risk profile and may warrant prospective evaluation

    Multiparametric MR imaging for detection of clinically significant prostate cancer: a validation cohort study with transperineal template prostate mapping as the reference standard.

    No full text
    PURPOSE: To evaluate the diagnostic performance of multiparametric (MP) magnetic resonance (MR) imaging for prostate cancer detection by using transperineal template prostate mapping (TTPM) biopsies as the reference standard and to determine the potential ability of MP MR imaging to identify clinically significant prostate cancer. MATERIALS AND METHODS: Institutional review board exemption was granted by the local research ethics committee for this retrospective study. Included were 64 men (mean age, 62 years [range, 40-76]; mean prostate-specific antigen, 8.2 ng/mL [8.2 μg/L] [range, 2.1-43 ng/mL]), 51 with biopsy-proved cancer and 13 suspected of having clinically significant cancer that was biopsy negative or without prior biopsy. MP MR imaging included T2-weighted, dynamic contrast-enhanced and diffusion-weighted imaging (1.5 T, pelvic phased-array coil). Three radiologists independently reviewed images and were blinded to results of biopsy. Two-by-two tables were derived by using sectors of analysis of four quadrants, two lobes, and one whole prostate. Primary target definition for clinically significant disease necessary to be present within a sector of analysis on TTPM for that sector to be deemed positive was set at Gleason score of 3+4 or more and/or cancer core length involvement of 4 mm or more. Sensitivity, negative predictive value, and negative likelihood ratio were calculated to determine ability of MP MR imaging to rule out cancer. Specificity, positive predictive value, positive likelihood ratio, accuracy (overall fraction correct), and area under receiver operating characteristic curves were also calculated. RESULTS: Twenty-eight percent (71 of 256) of sectors had clinically significant cancer by primary endpoint definition. For primary endpoint definition (≥ 4 mm and/or Gleason score ≥ 3+4), sensitivity, negative predictive value, and negative likelihood ratios were 58%-73%, 84%-89%, and 0.3-0.5, respectively. Specificity, positive predictive value, and positive likelihood ratios were 71%-84%, 49%-63%, and 2.-3.44, respectively. Area under the curve values were 0.73-0.84. CONCLUSION: Results of this study indicate that MP MR imaging has a high negative predictive value to rule out clinically significant prostate cancer and may potentially have clinical use in diagnostic pathways of men at risk

    Computer-aided diagnosis of prostate cancer using multiparametric MRI and clinical features: A patient-level classification framework

    Get PDF
    Computer-aided diagnosis (CAD) of prostate cancer (PCa) using multiparametric magnetic resonance imaging (mpMRI) is actively being investigated as a means to provide clinical decision support to radiologists. Typically, these systems are trained using lesion annotations. However, lesion annotations are expensive to obtain and inadequate for characterizing certain tumor types e.g. diffuse tumors and MRI invisible tumors. In this work, we introduce a novel patient-level classification framework, denoted PCF, that is trained using patient-level labels only. In PCF, features are extracted from three-dimensional mpMRI and derived parameter maps using convolutional neural networks and subsequently, combined with clinical features by a multi-classifier support vector machine scheme. The output of PCF is a probability value that indicates whether a patient is harboring clinically significant PCa (Gleason score ≥3+4) or not. PCF achieved mean area under the receiver operating characteristic curves of 0.79 and 0.86 on the PICTURE and PROSTATEx datasets respectively, using five-fold cross-validation. Clinical evaluation over a temporally separated PICTURE dataset cohort demonstrated comparable sensitivity and specificity to an experienced radiologist. We envision PCF finding most utility as a second reader during routine diagnosis or as a triage tool to identify low-risk patients who do not require a clinical read

    Multiparametric prostate MRI quality assessment using a semi-automated PI-QUAL software program

    Get PDF
    The technical requirements for the acquisition of multiparametric magnetic resonance imaging (mpMRI) of the prostate have been clearly outlined in the Prostate Imaging Reporting and Data System (PI-RADS) guidelines, but there is still huge variability in image quality among centres across the world. It has been difficult to quantify what constitutes a good-quality image, and a first attempt to address this matter has been the publication of the Prostate Imaging Quality (PI-QUAL) score and its dedicated scoring sheet. This score includes the assessment of technical parameters that can be obtained from the DICOM files along with a visual evaluation of certain features on prostate MRI (e.g., anatomical structures). We retrospectively analysed the image quality of 10 scans from different vendors and magnets using a semiautomated dedicated PI-QUAL software program and compared the time needed for assessing image quality using two methods (semiautomated assessment versus manual filling of the scoring sheet). This semiautomated software is able to assess the technical parameters automatically, but the visual assessment is still performed by the radiologist. There was a significant reduction in the reporting time of prostate mpMRI quality according to PI-QUAL using the dedicated software program compared to manual filling (5'54″ versus 7'59″; p = 0.005). A semiautomated PI-QUAL software program allows the radiologist to assess the technical details related to the image quality of prostate mpMRI in a quick and reliable manner, allowing clinicians to have more confidence that the quality of mpMRI of the prostate is sufficient to determine patient care

    Prostate MRI quality: a critical review of the last 5 years and the role of the PI-QUAL score

    Get PDF
    There is increasing interest in the use of multiparametric magnetic resonance imaging (mpMRI) in the prostate cancer pathway. The European Association of Urology (EAU) and the British Association of Urological Surgeons (BAUS) now advise mpMRI prior to biopsy, and the Prostate Imaging Reporting and Data System (PI-RADS) recommendations set out the minimal technical requirements for the acquisition of mpMRI of the prostate.The widespread and swift adoption of this technique has led to variability in image quality. Suboptimal image acquisition reduces the sensitivity and specificity of mpMRI for the detection and staging of clinically significant prostate cancer.This critical review outlines the studies aimed at improving prostate MR quality that have been published over the last 5 years. These span from the use of specific MR sequences, magnets and coils to patient preparation. The rates of adherence of prostate mpMRI to technical standards in different cohorts across the world are also discussed.Finally, we discuss the first standardised scoring system (i.e., Prostate Imaging Quality, PI-QUAL) that has been created to evaluate image quality, although further iterations of this score are expected in the future

    Cellular senescence as a possible link between prostate diseases of the ageing male

    Get PDF
    Senescent cells accumulate with age in all tissues. Although senescent cells undergo cell-cycle arrest, these cells remain metabolically active and their secretome — known as the senescence-associated secretory phenotype — is responsible for a systemic pro-inflammatory state, which contributes to an inflammatory microenvironment. Senescent cells can be found in the ageing prostate and the senescence-associated secretory phenotype and can be linked to BPH and prostate cancer. Indeed, a number of signalling pathways provide biological plausibility for the role of senescence in both BPH and prostate cancer, although proving causality is difficult. The theory of senescence as a mechanism for prostate disease has a number of clinical implications and could offer opportunities for targeting in the future
    corecore