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ABSTRACT

Computer-aided diagnosis (CAD) of prostate cancer (PCa) using multiparametric magnetic resonance
imaging (mpMRI) is actively being investigated as a means to provide clinical decision support to radiol-
ogists. Typically, these systems are trained using lesion annotations. However, lesion annotations are ex-
pensive to obtain and inadequate for characterizing certain tumor types e.g. diffuse tumors and MRI invis-
ible tumors. In this work, we introduce a novel patient-level classification framework, denoted PCF, that
is trained using patient-level labels only. In PCF, features are extracted from three-dimensional mpMRI
and derived parameter maps using convolutional neural networks and subsequently, combined with clin-
ical features by a multi-classifier support vector machine scheme. The output of PCF is a probability
value that indicates whether a patient is harboring clinically significant PCa (Gleason score > 3 +4) or
not. PCF achieved mean area under the receiver operating characteristic curves of 0.79 and 0.86 on the
PICTURE and PROSTATEx datasets respectively, using five-fold cross-validation. Clinical evaluation over a
temporally separated PICTURE dataset cohort demonstrated comparable sensitivity and specificity to an
experienced radiologist. We envision PCF finding most utility as a second reader during routine diagnosis
or as a triage tool to identify low-risk patients who do not require a clinical read.

© 2021 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

evation under benign circumstances and TRUS biopsy misses clini-
cally significant PCa (CSPCa). Typically, CSPCa refers to histopatho-

Prostate cancer (PCa) is the second most frequently diagnosed
cancer in men worldwide and the fifth leading cause of cancer
death in men (Bray et al., 2018). Despite considerable research, the
etiology of PCa is not yet well understood (Bray et al., 2018). While
age, race, and family history have shown the strongest associations
to PCa risk, no conclusive preventable risk factors have been iden-
tified. Therefore, work continues to identify methods for accurate
early diagnosis and effective treatment of PCa.

The prostate-specific antigen (PSA) blood test is an established
tool used by clinicians to determine which patients require confir-
matory transrectal ultrasound-guided (TRUS) biopsy (Ahmed et al.,
2017). However, PSA alone has a low specificity for PCa due to el-
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logically defined Gleason score (GS) > 3 +4 disease, which poses
an increased mortality risk (Woo et al., 2018). On a large cohort of
576 men with raised PSA and no previous biopsy, the “Prostate MRI
Imaging Study” (PROMIS) (Ahmed et al.,, 2017) found that TRUS
biopsy missed CSPCa in 52% of disease positive patients. The de-
ficiencies of the PSA blood test and TRUS biopsy can lead to incor-
rect diagnoses, inaccurate risk assessments, and suboptimal ther-
apy choices (Hoeks et al., 2011).

Multiparametric magnetic resonance imaging (mpMRI) is in-
creasingly being incorporated into the PCa diagnostic pathway
to enable non-invasive cancer detection, targeted biopsy and tar-
geted treatment planning (Wang et al, 2014). The most com-
monly collected sequences are those advocated by the revised
“Prostate Imaging Reporting and Data System” (PI-RADS v2)
(American College of Radiology, 2015) and the Likert assessment
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system (Brizmohun Appayya et al., 2018); namely, T2-weighted
imaging (T2WI), diffusion-weighted imaging (DWI), including ap-
parent diffusion coefficient (ADC) maps, and dynamic contrast-
enhanced imaging (DCEI). The PROMIS study found that mpMRI
prior to biopsy can identify one quarter of men presenting with
elevated PSA who might safely avoid biopsy, and that mpMRI fol-
lowed by targeted biopsy can reduce the over-diagnosis of clini-
cally insignificant cancer and improve the detection of clinically
significant cancer. However, reading mpMRI requires a high level
of expertise and is a time-consuming task (Wang et al., 2014).

Computer-aided diagnosis (CAD) systems that use mpMRI for
PCa diagnosis are actively being investigated. Many PCa CAD works
present systems that perform lesion classification by extracting
features from radiologist delineated lesion contours or from ra-
diologist defined lesion-centred patches (Antonelli et al., 2019;
Bonekamp et al., 2018; Dinh et al.,, 2018; Woznicki et al., 2020;
Zhong et al., 2019). Antonelli et al. (2019) trained machine learn-
ing classifiers to classify prostate tumors into those with/without
Gleason pattern 4, which is a difficult task for radiologists; they
showed that machine learning classifiers trained using MRI ra-
diomic features and clinical features outperformed radiologists on
this task. Similarly, WozZnicki et al. (2020) showed that an en-
semble machine learning classifier that combined radiomics, PI-
RADS scores, and clinical features performed comparably to radiol-
ogists for differentiating CSPCa lesions from other lesion types. In
Zhong et al. (2019), a convolutional neural network (CNN) classifier
was shown to achieve a similar area under the receiver operating
characteristic curve (ROC AUC) to PI-RADS v2 scoring, for classifica-
tion of lesion-centered patches as CSPCa or not CSPCa. However, in
clinical practice, the success of all aforementioned methods would
depend heavily on the experience of the radiologist(s) who per-
forms the initial lesion candidate selection. Other studies explored
CAD assistance during the initial detection stage by way of produc-
ing voxel probability maps that can help radiologists detect CSPCa
tumors (Greer et al., 2018; Giannini et al., 2017; Gaur et al., 2018;
Thon et al.,, 2017; Zhu et al., 2020). Greer et al. (2018) showed
that CAD-assisted mpMRI interpretation increased detection sen-
sitivity and agreement between nine radiologists with varying lev-
els of experience, while Gaur et al. (2018) found that CAD-assisted
mpMRI interpretation improved the specificity of both moderately
and highly experienced radiologists on an external multi-center
validation cohort. Fewer works present fully automated solutions
that both detect and classify lesions. The CAD system presented
by Litjens et al. (2014a) extracted a combination of intensity, tex-
ture, shape, anatomy, and pharmacokinetic features from T2WI,
DWI, and DCEI to generate a voxel probability map for each pa-
tient, followed by candidate selection, candidate feature extraction,
and classification of each candidate using a random forest classi-
fier. Patient-level ROC AUCs of 0.81 and 0.83 were obtained for
PCa vs. normal/benign and CSPCa vs. normal/benign respectively,
on a large cohort of 347 patients; their dataset is available for
download from the PROSTATEx Challenges database (Litjens et al.,
2017b). In Schelb et al. (2019), the authors compared the perfor-
mance of experienced radiologists to a U-Net CNN optimized for
detection and segmentation of CSPCa tumors using T2WI and DWI.
Notably, they thresholded the probabilistic output of their system
by picking an operating point that most closely matched PI-RADS
v2 performance in the training set, in terms of both sensitivity and
specificity. On a held-out testing set, they reported a per-patient
sensitivity of 92% on 26 patients with CSPCa and specificity of 47%
on 36 patients without CSPCa, which was similar to the sensitivity
and specificity of PI-RADS v2 scoring for threshold > 4.

The PCa CAD system works described above required lesion
contour or lesion centroid ground-truth for training their sys-
tems. Producing either type of lesion annotation on mpMRI can be
challenging and/or time-consuming for a number of reasons. First

Medical Image Analysis 73 (2021) 102153

and foremost, producing lesions annotations on mpMRI, following
prostatectomy or a MRI-blinded biopsy technique such as system-
atic biopsy, saturation biopsy, or transperineal template prostate
mapping (TTPM) biopsy is not clinical routine and therefore, must
be performed retrospectively (Cao et al., 2019). While lesion cen-
troid annotations may be made prospectively ahead of targeted
biopsy, targeted biopsy alone is not recommended as a refer-
ence standard (Simmons et al., 2014). Second, cognitive matching
of biopsy or prostatectomy findings to mpMRI may be required,
which is not trivial. Third, once location on mpMRI is determined,
if a contour is sought, it will typically be drawn on T2WI (due to
its high spatial resolution and superior tissue contrast), in-plane
and on all other slices containing the lesion. Should registration
issues arise between mpMRI modalities, lesion contours or lesion
centroids may be required on the other modalities also. A fur-
ther challenge is posed by diffuse non-focal tumors and MRI in-
visible tumors (Borofsky et al., 2017); it is unclear how these tu-
mors should be annotated. Fourth and finally, to account for inter-
observer variability (Steenbergen et al., 2015), lesion annotations
should be made by more than one radiologist, which can increase
the overall time taken to perform annotations multiplicatively. Due
to the annotation difficulties described, CAD systems for PCa are
typically trained on small, carefully prepared datasets.

In this work, we introduce a novel patient-level classification
framework, denoted PCF, that is trained using patient-level labels
only, therefore avoiding the need for lesion annotations. In PCF,
feature vectors are extracted from three-dimensional T2WI, ADC
map, computed high b-value DWI, and four semi-quantitative pa-
rameter maps extracted from DCEI using CNNs, where each CNN
is a modified 3D ResNet architecture, proposed in this work. Dur-
ing the training phase of PCF, feature selection is applied to se-
lect the optimal subset of CNN feature vectors and available clin-
ical features for patient classification. Subsequently, selected CNN
feature vectors and clinical features are combined for classification
using a two-level multi-classifier support vector machine (SVM)
scheme. The output of PCF is a patient probability associated to
the presence of CSPCa in the patient’s prostate; here, CSPCa is de-
fined as GS > 3 + 4 disease. Utilizing features extracted from the
full-breadth of mpMRI and available clinical features in combina-
tion to enhance classification performance is in line with the guid-
ance provided by the Likert assessment system for radiologists.
The primary contribution of this work is the proposal of PCF for
patient-level CSPCa classification, while a secondary contribution is
our proposed method for DCEI analysis i.e. extraction of CNN fea-
tures from constructed semi-quantitative volumetric DCEI parame-
ter maps. We envision PCF being applied as a second reader dur-
ing routine diagnosis or as a triage tool which can identify low risk
patients that do not require a clinical read; both applications could
help alleviate the workload of radiologists who are an increasingly
stretched resource (The Royal College of Radiologists, 2018).

The paper is organized as follows: In Section 2, we describe the
technical details of PCF. In Section 3, we introduce the two pa-
tient datasets used to evaluate the performance of PCF, the clas-
sification tasks performed, the evaluation measures used, and the
experimental settings employed. Section 4 presents results for pa-
tient classification. In Section 5, we conclude by discussing the im-
plications of our results and future work.

2. Methods

PCF is visualized schematically in Fig. 1. First, mpMRI and
clinical features are pre-processed. This involves automated
prostate region segmentation, calculation of high b-value DWI
and semi-quantitative DCEI parameter maps, and finally, normal-
ization/standardization of images, parameter maps, and clinical
features. Second, CNN encoders are employed to extract feature
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Fig. 1. Workflow of the proposed patient-level classification framework, PCF. Green rectangles indicate original scans or clinical features or the probabilistic classification
outcome; yellow rectangles indicate processes applied to the data. In experiments, we refer to PCF with forward feature selection disabled as PCF-ALL and PCF with forward

feature selection enabled as PCF-SEL.

vectors from three-dimensional MR images and parameter maps.
Third, forward feature selection is used to select the CNN feature
vectors and clinical features that are most pertinent for classifica-
tion. Fourth and finally, a two-level SVM scheme is used to output
patient probability of CSPCa. Each stage is described in more detail
in the sections to follow, while experimental parameters used to
collect results are described in Section 3.3.

2.1. Pre-processing

2.1.1. Automated prostate region segmentation

As a first step, the prostate is segmented on T2WI. Segmenta-
tion of the prostate creates a simpler classification task, unsullied
by excess background information. In PCF, we use HighRes3DNet
(Li et al.,, 2017) to segment the prostate on T2WI. HighRes3DNet
is a high-resolution compact CNN for volumetric image segmen-
tation. Given a three-dimensional T2WI, Iy, HighRes3DNet out-
puts a prostate mask, Stow;, with the same spatial dimensions as
Itowi- The prostate mask for DWI, Spyy, is obtained by transforming
Stowi from T2WI space into DWI space using a registration-driven
transformation T such that T : Stow; — Spwi, Which accounts for
resolution differences between T2WI and DWI, as well as volun-
tary/involuntary patient movement between acquisitions, and dis-
tortions on DWI caused by air in the rectum (De Luca et al., 2011).
Here, T = Ty,;q o T, where T, is the transformation given by the
affine registration of Ity to the three-dimensional ADC map, Iazpc,
using the symmetric block-matching algorithm (Modat et al., 2014)
and T4 is given by the subsequent non-rigid registration using
the free-form deformation (FFD) algorithm (Modat et al., 2010).
The convolution-based fast local normalized correlation coefficient
(LNCC) (Cachier et al., 2003) is used as similarity measure for FFD
to enable robustness to bias field inhomogeneity. The same ap-
proach is used to obtain the prostate mask in DCEI space, Spcgr;
in this case driven by the registration of T2WI to the first DCEI
timepoint. The prostate masks, Stowi, Spwi, and Spcg obtained for
each patient are used to crop a sub-volume containing the prostate
in corresponding imaging.

2.1.2. Computed high b-value DWI

High b-value images with b-value > 1400 are a key component
of mpMRI (American College of Radiology, 2015). Computed high
b-value DWI has been shown to achieve superior image quality and
lesion conspicuity than acquired high b-value DWI (Verma et al.,
2016). In PCF, we compute high b-value DWI using a monoexpo-
nential model (Blackledge et al., 2011) for the per-voxel observed
signal:

s(b) =s(0) exp(—b - ADC). (1)

Non-linear least squares is used to fit Eq. (1) to the observed
points given by low b-value DWI intensities, giving per-voxel esti-
mates of s(0) and ADC: s*(0) and ADC*. High b-value images are
then computed using the equation:

s(b;) = s*(0) exp(—b - ADC"), (2)

where b, is the high b-value being extrapolated to.

2.1.3. Semi-quantitative DCEI parameter maps

Semi-quantitative analysis of DCEI has been shown to pro-
vide good discrimination between benign and malignant lesions
(Zelhof et al., 2009), while avoiding the challenging estimation of
the arterial input function needed for computing pharmacokinetic
parameters (Haq et al., 2015). In PCF, semi-quantitative analysis of
DCEI is used to compute parameter maps in an automated manner.

First, per-voxel signal intensity-versus-time curves are normal-
ized to a standard pre-contrast level using a mean baseline com-
puted from the first three signal values from T timepoints:

3
A_Si . . St
(=1 t=1,...,T, k_; ) (3)

W]

Then, four voxel-wise variables are extracted: initial slope of en-
hancement (IS), maximum enhancement (ME), time to maximum
enhancement (TM), and final slope (FS); originally defined in
Zelhof et al. (2009) and Kubassova et al. (2007), but we are the
first to use them to construct three-dimensional parameter maps
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Fig. 2. Normalized signal intensity-versus-time curve corresponding to voxel at the
center of a GS 3+4 lesion of a patient from the PROSTATEx dataset.

and in addition, to later extract spatial features from the param-
eter maps using CNNs. An illustration of the variables is given in
Fig. 2.

IS is assumed to be the gradient of the steepest portion of the
normalized signal intensity-versus-time curve. First, an averaging
window of length Ijs is passed over the normalized signal {s}}tT:] in
steps of one timepoint as in Kubassova et al. (2007). The gradient
of the linear best fit in each window is computed, giving the set
of gradients {gt}[T;ll’SH. Subsequently, IS is computed by taking the
maximum of the gradients:

IS = max({g:} ), (4)

where [ is determined empirically based on the temporal resolu-
tion of the DCEI.

ME is calculated as the maximum value of the normalized sig-
nal:

ME = max({§&:}_,). (5)

TM is calculated as the difference between onset time, denoted
tos, and the time of ME, denoted ty, in minutes, where tgs is de-
fined as the first time point in the averaging window to which IS
corresponds:

TM = tyE — tos. (6)

FS is defined as the gradient of the normalized signal over the
wash-out phase of the contrast agent. Here, we compute it as the
the gradient grg of the linear best fit over the final mgg minutes of
the normalized signal, where mgs is determined empirically based
on the length of the wash-out phase of the contrast agent.

2.1.4. Normalization/standardization

Histogram-based standardization is applied to the prostate re-
gion in each patient’s T2WI to homogenize tissue intensities across
patients in line with the work by Toivonen et al. (2019). Im-
ages are transformed by matching their intensity histograms to a
mean histogram calculated using training data. The algorithm, in-
cluding pseudo-code, is presented in Nyul et al. (2000). A sim-
ple per-patient z-score normalization is then applied to each pa-
tient’s standardized T2WI, computed b2000 DWI, and DCEI pa-
rameter maps in line with the work by Isensee et al., 2018, who
showed this to be an effective strategy for MRI as CNN input. ADC
maps are not normalized since ADC is a quantitative measurement.
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Fig. 3. (a) Proposed ResNet3D CNN used to extract features from volumetric im-
ages. (b) A bottleneck block, where k = #kernels.

Each clinical feature included in PCF is standardized to have
zero mean and unit standard deviation, using mean and standard
deviation computed from training data.

2.2. Convolutional neural network feature extraction

ResNet CNN architectures have demonstrated superior perfor-
mance in several image classification tasks (He et al., 2015; 2016).
In PCF, seven identical 3D ResNet CNN architectures, denoted
{ResNetBD—i},?:l, are employed to extract features from T2WI, ADC
map, high b-value DWI, and each of the four DCEI parameter maps.
ResNet3D is a modified 3D implementation of the standard 2D
ResNet. Our implementation is composed of a convolutional layer
C;, followed by four bottleneck blocks By, By, B3 and By, and a fully-
connected layer FC. A network diagram is shown in Fig. 3a. Bot-
tleneck blocks reduce the computational load of 3D convolutional
layers by performing a channel reduction and restoration operation
either side of the core convolution operation as shown in Fig. 3b.
Preactivation (He et al., 2016) (batch normalization and rectified
linear unit activation prior to weight layer computation) is used to
ease optimization and regularize the networks. The last bottleneck
block, B4, outputs a set of feature maps to which global average
pooling is applied to transform each feature map f; into a feature
value v;.

During the training phase of PCF, each ResNet3D-i is trained
end-to-end. The feature values v; are linearly combined in the FC
layer, followed by softmax to produce a classification output, fol-
lowed by loss computation, backpropagation, and weight updates.
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During inference, the feature values vj, corresponding to
ResNet3D-i, are grouped into a feature vector V; = {vj}}f‘l. Subse-
quently, each feature vector V; corresponding to each ResNet3D-i is
passed to a two-level SVM scheme where the final patient classifi-
cation is made.

2.3. Forward feature selection

The optimal subset of ResNet3D feature vectors V = {Vi}i7:1 and
normalized clinical features F = {Fj}?’:r for some quantity of clin-
ical features N, is found during the training phase of PCF using
forward feature selection (FFS) (Efroymson, 1966). FES is used to
remove features that are acting as noise; removing noise is espe-
cially important when training classification algorithms using small
datasets. In our implementation of FFS, each ResNet3D feature vec-
tor V; is considered a feature. We denote the total feature set
ALL =V UF. We begin by assuming the null set of selected features
SEL = @. At each iteration we induct the feature into SEL which
maximizes an evaluation metric M computed over SEL. The FFS
procedure is summarized as follows:

1. Initialize SEL = {@};
2. For each feature X, € ALL, k=1,...,N+ 7, compute M(X}) and
select the feature X, that maximizes M;
3. Remove X, from the set ALL and add X, to the set SEL; thus
ALL := ALL\{X,} and SEL := {X};
4. Repeat until a decrease in M is observed:
(a) For each X, in ALL, compute M(SELU {X,}) and select the
feature X, that maximizes M;
(b) Remove X, from the set ALL and add X, to the set SEL; thus
ALL := ALL\{X,} and SEL := SELU {X,};

2.4. Support vector machine classification

A two-level multi-classifier SVM scheme is used to combine the
selected ResNet3D feature vectors and normalized clinical features
to produce a final patient classification. Two SVMs, denoted SVM-1
and SVM-2, are included in the first layer and a third SVM, de-
noted SVM-3, is included in the second layer. First, SVM-1 takes
the ResNet3D feature vectors V; e SEL as input and outputs a pa-
tient classification probability y;. Concurrently, SVM-2 takes the
normalized clinical features F; € SEL as input and outputs a patient
classification probability y,. Since SVMs do not naturally output a
probability, Platt scaling (Platt, 1999) is used to obtain probability
estimates. Then, SVM-3 accepts y; and y, as input to output a fi-
nal classification probability j associated to the positive class i.e.
probability that the patient has CSPCa. It should be noted that if
clinical features are either not available or not selected by FFS, the
final classification is made by SVM-1, and SVM-2 and SVM-3 will
be omitted.

3. Experimental setup

In this section we describe the patient datasets used in this
work, the classification tasks completed, the validation measures
used to evaluate PCF, and the methodological settings employed
for conducting experiments.

3.1. Patient data

The performance of PCF was evaluated using two datasets.
The first is a dataset collected during the Prostate Imaging Com-
pared to Transperineal Ultrasound-guided biopsy for significant
prostate cancer Risk Evaluation (PICTURE) study (Simmons et al.,
2014) and the second is the publicly available PROSTATEx dataset
(Litjens et al., 2017a).
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Table 1

PICTURE dataset patient characteristics. Interquartile
range shown in brackets for age, PSA, TPV, and PSA den-
sity (PSAd).

Total patients following exclusions 210

Median age (years) 62 (58-67)
Median PSA (ng) 7 (5-10)
Median TPV (ml) 40 (28-51)
Median PSAd (ng/ml) 0.18 (0.13-0.28)

Breakdown by max GS # of patients

Normal/Benign 30
GS 3+3 50
GS 3+4 96
GS 4+3 30
GS >8 4

3.1.1. PICTURE dataset

Full details of the PICTURE study have been previously reported
(Simmons et al., 2014). The PICTURE study recruited men who
had undergone an initial standard transrectal ultrasound-guided
(TRUS) biopsy, but concern remained over the accuracy of the sub-
sequent diagnosis. As part of the study, patients were offered an
ultrasound-guided TTPM biopsy with a 5 mm sampling frame and
MRI-targeted biopsy, which were used as the reference standard
against which the diagnostic accuracy of mpMRI could be deter-
mined. MpMRI was acquired using a 3 Tesla magnetic field scan-
ner (Achieva, Philips Healthcare) and a pelvic-phased array coil. Se-
quences collected included T2WI, DWI with high b-value (2000),
ADC map computed from DWI at multiple b-values (0, 150, 500,
1000), and DCEI with a temporal resolution of 13s. 249 men com-
pleted mpMRI, TTPM biopsy, and targeted biopsy. A 5-point Lik-
ert impression scale based on the outputs of a consensus group
(Dickinson et al., 2011) was used by a radiologist with 10 years
of experience in reading mpMRI to score at the lesion, sector, and
patient level. Three definitions of clinical significance were consid-
ered during scoring: “Any cancer”, “Definition 2” (> 0.2cc and/or
> GS 3+4) and “Definition 1” (> 0.5cc and/or > GS 4+3). Clini-
cal information, including the referral PSA (ng) and estimated total
prostate volume (TPV) (ml), was available to the radiologist during
scoring to reflect real clinical practice.

In our work, the patient-level ground truth used for training
and evaluating PCF was established as follows: a patient was al-
located to the CSPCa class if any core sampled during TTPM biopsy
or targeted biopsy was positive for GS > 3 + 4. Five patient stud-
ies were removed due to one or more missing MRI sequences and
34 patient studies were removed due to severe magnetic suscepti-
bility artifacts on DWI. Characteristics of the included patients are
shown in Table 1.

3.1.2. PROSTATEx dataset

Limited details of the PROSTATEx dataset have been previ-
ously reported (Litjens et al., 2014a). MpMRI and histopathologi-
cal findings for 346 consecutive studies were downloaded from the
PROSTATEx Challenges database (Litjens et al., 2017a). MpMRI was
acquired using two 3 Tesla magnetic field scanners (Magnetom Trio
and Skyra, Siemens) and a pelvic-phased array coil. Sequences col-
lected included T2WI, ADC map computed from DWI at multiple b-
values (50, 400, 800), and DCEI with a temporal resolution of 3.5s.
All mpMRI studies were reported on by a radiologist with over 20
years of experience in reading prostate mpMRI (Barentsz), who in-
dicated areas of suspicion per modality with a point marker. A PI-
RADS v1 score was assigned to each lesion, though these were not
available in the released dataset. MR-guided biopsies were carried
out for PI-RADS v1 > 3 lesions and biopsy samples were graded by
a histopathologist.
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Table 2
PROSTATEXx dataset patient characteristics.

Total patients following exclusions 282

Breakdown by max GS # of patients

No CSPCa* 212
GS 3+4 38
GS 4+3 19
GS > 8 13

*Either GS < 6, benign or PI-RADS = 2. PI-RADS = 2
lesions were not biopsied; assumed not CSPCa, CSPCa
occurrence in PI-RADS = 2 lesions at Radboud Medical
Center less than 5%.

In our work, the patient-level ground truth used for training
and evaluating PCF was established as follows: a patient was al-
located to the CSPCa class if the patient’s prostate contained any
lesion with GS > 3 + 4.

64 patient studies were removed due to missing ground-truth
labels; of these, two patients belonged to the PROSTATEx Chal-
lenges training set and 62 patients belonged to the PROSTATEx
Challenges test set. Characteristics of the remaining 282 patient
studies are shown in Table 2.

3.2. Experiments

PCF was trained to classify patients into those with CSPCa and
those without CSPCa, where CSPCa refers to the presence of max
GS > 3 + 4 tissue, as determined through histopathological analy-
sis. In the PICTURE dataset a total of 130 patients with CSPCa and
80 patients without CSPCa were available for analysis, while in the
PROSTATEX dataset a total of 70 patients with CSPCa and 212 pa-
tients without CSPCa were available for analysis. The following ex-
periments were conducted:

o Intra-dataset evaluation: The following classifiers were
trained: (i) ResNet3D with individual MRI modali-
ties or parameter maps (ResNet3D-x, where xeX =

{T2WI, ADC, Cb2000, IS, ME, TM, FS}); (ii) SVM with individual
clinical features (SVM-y, where y € Y = {PSA, TPV, PSAd}); (iii)
PCF with the set of available MRI modalities and parameter
maps (PCF-ALL-MR); (iv) PCF with the set of MRI modalities
and parameter maps selected by FFS (PCF-SEL-MR); (v) PCF
with the set of available MRI modalities, parameter maps,
and clinical features (PCF-ALL); and (vi) PCF with the set of
MRI modalities, parameter maps. and clinical features selected
by FFS (PCF-SEL). The performance of classifiers was evalu-
ated using a five-fold cross-validation on the PICTURE and
PROSTATExX datasets separately. The mean receiver operating
characteristic (ROC) curve, precision-recall (PR) curve, and
respective areas under the curve (AUC) were calculated in each
instance. The Wilcoxon-signed rank test for pairwise compar-
ison (Wilcoxon, 1945) was applied to statistically validate the
comparison between different classifiers.

Inter-dataset evaluation: ResNet3D classifiers, PCF-ALL-MR clas-
sifiers, and PCF-SEL-MR classifiers, obtained from the PICTURE
dataset intra-dataset five-fold cross-validation were used to
perform inference on the PROSTATEx dataset and vice versa.
The mean and standard deviation of the ROC and PR AUCs of
the five cross-validation models is presented.

Clinical evaluation: The PICTURE dataset alone was used for
clinical evaluation as radiologist PI-RADS v1 scores associated
to the PROSTATEx dataset have not been released publicly. The
PICTURE dataset was divided temporally into 170 patients for
training (scan dates: 11/01/2012 to 25/06/2013) and 40 patients
for testing (scan dates: 26/06/2013 to 29/01/2014). The test set
comprised of 20 patients with CSPCa and 20 patients without
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CSPCa. PROSTATEx scans were used to augment the training
set. PCF-SEL was used in the clinical evaluation. The probabilis-
tic output of PCF-SEL was binarized by selecting a cutoff that
matched the sensitivity of the radiologist on the PICTURE train-
ing set at two cutoffs: Likert > 3 and Likert > 4. The sensitivity,
specificity, precision, and negative predictive value (NPV) were
computed; 95% confidence intervals (CI) were calculated using
bootstrapping. McNemar’s test (McNemar, 1947) was used to
statistically compare the sensitivity and specificity of the radiol-
ogist and PCF-SEL, while the weighted generalized score (WGS)
test statistic (Kosinski, 2013) was used to compare the precision
and NPV of the radiologist and PCF-SEL.

3.3. Experimental settings

In this section we describe the methodological settings used for
conducting experiments with PCF.

3.3.1. Pre-processing settings

HighRes3DNet was trained using the T2WI of 82 patients from
the PICTURE dataset for which manual contours of the whole
prostate were available, and 50 training cases from the publicly
available PROMISE12 dataset (Litjens et al., 2014b). All images
were whitened and resampled to isotropic Tmm resolution as pre-
processing, and resampled to original voxel resolution as post-
processing. During training subvolumes of size 643 were sampled
to maintain a 50:50 ratio of foreground to background voxels. Flip
and rotation augmentations were applied on-the-fly. Training was
conducted using Dice loss (Milletari et al., 2016), Adam optimisa-
tion (Kingma and Ba, 2015), learning rate equal to 0.001, and batch
size 4. The network was trained until we observed a plateau in
performance on the validation set. The trained network was used
to segment the remainder of the PICTURE dataset and the entirety
of the PROSTATEx dataset. A mean Dice score of 0.90 was achieved
on a ten-fold cross-validation of the 82 PICTURE dataset patients.

Registration of T2WI to ADC map and first timepoint of DCEI,
used to obtain the transformation of prostate masks into DWI and
DCEI space, used default parameters for affine registration via sym-
metric block-matching (Modat et al., 2014). The subsequent non-
rigid FFD registration used a Gaussian kernel with standard de-
viation equal to 5mm for LNCC calculation, control point spacing
equal to 10mm, and bending energy constraint equal to 0.1.

A high b-value, b,=2000, was selected for computing high b-
value DWI as in Verma et al. (2016).

The DCEI parameter IS was calculated using an averaging win-
dow of length I;s =3 for the PICTURE dataset and [;s =5 for the
PROSTATEx dataset. DCEI parameter FS was calculated over the
final mgs =2 minutes of the normalized signal for the PICTURE
dataset and mps =1 minutes of the normalized signal for the
PROSTATEx dataset.

As recommended in Nydl et al. (2000), deciles were used as
landmarks for histogram standardization of T2WIL.

3.3.2. Training settings

For each experiment, training data was further subdivided
80:20 into training and validation sets. The training set was used
for training constituent ResNet3D and SVM classifiers, while the
validation set was used for selecting feature vectors and normal-
ized clinical features during FFS.

All images were resized to a common size of 65 x 65 x 45
prior to ResNet3D training. Each ResNet3D in PCF was trained us-
ing cross-entropy loss, Adam optimisation, learning rate equal to
0.00001, and batch size 8. In-plane flip and random deformation
augmentations were applied to the training set to balance classes
and reduce overfitting.
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Table 3
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Intra-dataset evaluation. Mean ROC AUC and PR AUC #+ one standard deviation, for ResNet3D,
SVM and PCF classifiers, averaged over five-fold cross validation, for the PICTURE and PROSTATEx
datasets. Highest value in each column shown in bold.

PICTURE dataset

PROSTATEX dataset

Classifier Mean ROC AUC  Mean PR AUC  Mean ROC AUC  Mean PR AUC
ResNet3D-T2WI 0.70 £ 0.06 0.79 £0.05 0.78 £0.07 0.60 +0.08
ResNet3D-ADC 0.74 4+ 0.09 0.83+0.08 0.80+0.05 0.64+0.04
ResNet3D-Cb2000  0.67 +£0.10 0.79+0.08 0.82+£0.05 0.66 £+ 0.07
ResNet3D-IS 0.65+0.03 0.75 +£0.04 0.70 £0.08 0.47 +£0.07
ResNet3D-ME 0.67 +£0.06 0.76 + 0.06 0.79+0.05 0.55+0.07
ResNet3D-TM 0.68+£0.13 0.77 £0.09 0.70 £0.08 0.44+0.11
ResNet3D-FS 0.65+0.08 0.75 £0.05 0.72 £0.03 0.44+0.03
PCF-ALL-MR 0.724+0.09 0.80 +£0.07 0.82£0.04 0.63 £0.05
PCF-SEL-MR 0.77+0.11 0.84 +0.09 0.86 +0.04 0.72+0.03
SVM-PSA 0.54 +£0.06 0.64+£0.03 n/a n/a
SVM-TPV 0.70+0.12 0.80+0.10 n/a n/a
SVM-PSAd 0.73 £ 0.07 0.82 +0.06 n/a n/a
PCF-ALL 0.74+0.10 0.81+£0.09 0.82+£0.04 0.63 £0.05
PCF-SEL 0.79 £ 0.09 0.86 +0.07 0.86 +0.04 0.72 £0.03

The following metric M is proposed for observation during FFS:

M= ROCAUC+PRAUC’ 7)
2
as it maximizes both model evaluation metrics of interest.

A radial basis kernel was used in SVM-1, SVM-2, and SVM-3 as
there existed no reason to assume linear separability of data. The
misclassification penalty was set to C = 0.1 for SVM-1 and SVM-2,
and C =1 for SVM-3, in all experiments.

4. Results

In this section we present the results obtained from the intra-
dataset and inter-dataset evaluations of PCF, as well as the clinical
evaluation of PCF using a temporally separated patient cohort from
the PICTURE dataset.

4.1. Intra-dataset model evaluation

The mean ROC and PR AUCs averaged over five-fold cross-
validation for ResNet3D, SVM, and PCF classifiers are shown in
Table 3 for both the PICTURE and PROSTATEx datasets. Fig. 4a-
d show the mean ROC and PR curves calculated for PCF-SEL for
both datasets. Reliability diagrams for PCF-SEL are shown in Fig. 4e
for both datasets. An additional comparison of PCF to an end-to-
end CNN is shown in Appendix A and an analysis of the rela-
tionship between the probabilistic output of PCF with radiologist
Likert score and biopsy maximum cancer core length is shown in
Appendix B.

For the PICTURE dataset, ResNet3D-ADC had the best perfor-
mance among ResNet3D and SVM classifiers that were trained us-
ing a single MRI modality, parameter map, or clinical feature. PCF-
ALL did not improve the result. However, PCF-SEL did improve
upon the result of ResNet3D-ADC, with an increase in ROC AUC
from 0.74 to 0.79 (p < 0.05) and an increase in PR AUC from 0.83
to 0.86 (p = 0.08); during the five-fold cross-validation of PCF-SEL,
FES selected ADC map, PSAd, Cb2000 DWI, and TM map in the ma-
jority of fold experiments run.

For the PROSTATEx dataset, ResNet3D-Cb2000 had the best
performance among ResNet3D classifiers that were trained using
a single MRI modality of parameter map. PCF-ALL did not im-
prove the result. However, PCF-SEL did improve upon the result
of ResNet3D-Cb2000, with an increase in ROC AUC from 0.82 to
0.86 (p =0.07) and an increase in PR AUC from 0.66 to 0.72 (p =
0.07); during the five-fold cross-validation of PCF-SEL, FFS selected

Cb2000 DWI, ADC map, and ME map in the majority of fold exper-
iments run.

In addition to the ability to discriminate between classes, it is
desirable for models to produce well-calibrated probability esti-
mates. For output probability P, perfect calibration is defined as:

P(CSPCa|P=p)=p, Vpel0,1], (8)
i.e. P should represent a true probability (Guo et al., 2017). Fig. 4a
shows reliability diagrams for PICTURE and PROSTATEX dataset pa-
tient probabilities output by PCF-SEL. Perfect calibration is repre-
sented by the identity diagonal. As observed for both datasets, the
identity diagonal is broadly tracked indicating reasonable calibra-
tion. For the PICTURE dataset we observe better calibration at the
higher probability end, while for the PROSTATEX dataset we ob-
serve better calibration at the lower probability end. This may be
explained by the higher prevalence of CSPCa patients in the PIC-
TURE dataset and the higher prevalence of patients with benign
conditions or low-grade PCa in the PROSTATEx dataset.

4.2. Inter-dataset model evaluation

ResNet3D classifiers, PCF-ALL-MR classifiers, and PCF-SEL-MR
classifiers, obtained from the PICTURE dataset intra-dataset five-
fold cross-validation, were used to perform inference on the
PROSTATEx dataset and vice versa. The mean and standard devi-
ation of the ROC and PR AUCs of the five cross-validation models
is presented in Table 4. Clinical features were not considered since
they were not available for the PROSTATEX dataset.

ResNet3D-ADC trained using the PROSTATEx dataset and ap-
plied to the PICTURE dataset maintained a similar performance
level to ResNet3D-ADC trained with the PICTURE dataset. Similarly,
ResNet3D-Cb2000 trained using the PICTURE dataset and applied
to the PROSTATEx dataset maintained a similar performance level
to ResNet3D-Cb2000 trained with the PROSTATEx dataset. For both
datasets we observed a decrease in the performance of ResNet3D
classifiers trained using DCEI parameter maps likely due to the dif-
ferences in temporal resolution of the DCEI between the PICTURE
and PROSTATEx datasets (13s vs. 3.5s). Notably, for both datasets
we observed a drop in the performance of PCF-SEL-MR as com-
pared to its performance in the intra-dataset evaluation, primarily
as the datasets do not share the same optimal modalities and due
to the reduction in performance of constituent ResNet3D classifiers
trained using DCEI parameter maps.
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Fig. 4. Intra-dataset evaluation. Graphs (a, b) show the mean ROC and PR curves, averaged over five-fold cross validation, for PCF-SEL, for the PICTURE dataset, while graphs
(c, d) correspond to the PROSTATEX dataset. Reliability diagrams for PCF-SEL are shown in (e), for both datasets.
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Table 4
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Inter-dataset evaluation. Mean ROC AUC and PR AUC + one standard deviation for ResNet3D
and PCF classifiers obtained during the intra-dataset evaluation and subsequently applied to the
dataset that was not used to train the classifier. Highest value in each column shown in bold.

PROSTATEX train, PICTURE test

PICTURE train, PROSTATEX test

Classifier Mean ROC AUC  Mean PR AUC  Mean ROC AUC  Mean PR AUC
ResNet3D-T2WI 0.70 £ 0.01 0.79 £0.01 0.75+0.01 0.5140.03
ResNet3D-ADC 0.73+0.03 0.82+0.02 0.73 +£0.02 0.47 £ 0.01
ResNet3D-Cb2000  0.68 +0.00 0.79 £0.00 0.81 +£0.02 0.65+0.03
ResNet3D-IS 0.63 £0.01 0.72 £0.01 0.514+0.08 0.30+£0.06
ResNet3D-ME 0.62 +0.02 0.72 +0.01 0.59 +0.06 0.33+0.05
ResNet3D-TM 0.65+0.03 0.74 +0.02 0.58 £0.07 0.33 +£0.06
ResNet3D-FS 0.60 £0.04 0.69 £0.02 0.62 £0.04 0.33 +£0.03
PCF-ALL-MR 0.73 +£0.01 0.80+£0.01 0.75+0.03 0.50 +£0.04
PCF-SEL-MR 0.72 +£0.03 0.81+0.03 0.77 £0.07 0.56 +£0.11
Table 5

Clinical comparison of the patient-level diagnostic performance of radiologist Likert scoring and
PCF-SEL, on temporally separated training and test cohorts from the PICTURE dataset.

Metric

Value

95% CI

Value

95% CI

P-value

Training set (n = 170)

Likert > 3 PCF-SEL > 0.17
Sensitivity [ Recall (%) 95 (104/110)  (90-98) 95 (104/110)  (90-98) 1.00
Specificity (%) 33 (20/60) (22-45) 65 (39/60) (53-77) <0.01
Precision | PPV (%) 72 (104/144)  (65-79) 83 (104/125)  (76-90) < 0.01
NPV (%) 77 (20/26) (59-92) 87 (39/45) (76-96) 0.27
Likert > 4 PCF-SEL > 0.75
Sensitivity / Recall (%) 69 (76/110) (60-78) 69 (76/110) (60-78) 1.00
Specificity (%) 77 (46/60) (66-87) 87 (52/60) (78-95) 0.21
Precision | PPV (%) 84 (76/90) (77-92) 90 (76/84) (84-96) 0.14
NPV (%) 58 (46/80) (47-68) 60 (52/86) (50-71) 0.54
Test set (n = 40)
Likert > 3 PCF-SEL > 0.17
Sensitivity / Recall (%) 100 (20/20) (100-100) 95 (19/20) (83-100) 1.00
Specificity (%) 20 (4/20) (5-39) 35 (7/20) (14-57) 0.51
Precision | PPV (%) 56 (20/36) (39-71) 59 (19/32) (42-76) 0.47
NPV (%) 100 (4/4) (100-100) 87 (7/8) (60-100) 0.46
Likert > 4 PCF-SEL > 0.75
Sensitivity [ Recall (%) 75 (15/20) (55-94) 75 (15/20) (55-94) 1.00
Specificity (%) 75 (15/20) (55-93) 55 (11/20) (33-77) 0.23
Precision | PPV (%) 75 (15/20) (55-93) 63 (15/24) (43-82) 0.34
NPV (%) 75 (15/20) (55-94) 69 (11/16) (44-91) 0.57

4.3. Clinical evaluation

In this section we present the results of the clinical evaluation
of PCF-SEL. To simulate prospective use we temporally split the
PICTURE dataset into 170 patients for training and 40 patients for
testing (20 patients with CSPCa and 20 patients without CSPCa).
The performance of PCF-SEL is compared to the performance of an
experienced radiologist (10 years of experience in reading prostate
mpMRI) who assigned a Likert score to each patient. To enable cal-
culation of sensitivity, specificity, precision, and NPV for PCF-SEL,
the probabilistic output of PCF-SEL was thresholded to match the
sensitivity of the radiologist on the training set. The results of the
clinical evaluation are shown in Table 5. Fig. 5 shows the training
and test set ROC and PR curves calculated for PCF-SEL, as well as
the performance of the radiologist and PCF-SEL at two operating
thresholds.

FFS selected SEL = {T2WI, ADC map, Cb2000 DWI, PSAd}. Using
the training cohort a probability threshold equal to 0.17 was se-
lected for PCF-SEL to match the sensitivity of the radiologist at Lik-
ert threshold > 3, while a probability threshold equal to 0.75 was
selected to match the sensitivity of the radiologist at Likert thresh-
old > 4. On the test cohort, PCF-SEL achieved sensitivities of 95%

and 75%, compared to the radiologist who achieved sensitivities of
100% and 75% and PCF-SEL achieved specificities of 35% and 55%,
compared to the radiologist who achieved specificities of 20% and
75%.

While differences in specificity can be observed in favour of
PCF-SEL at the higher sensitivity setting and in favour of the radi-
ologist at the lower sensitivity setting, McNemar's test did not find
statistically significant differences between PCF-SEL and the radiol-
ogist on the test cohort.

5. Discussion

In this work we proposed a patient-level classification frame-
work, denoted PCF, that uses volumetric mpMRI, derived parameter
maps, and clinical features, jointly, to classify patients into those
with and without CSPCa. PCF is trained using patient-level labels
only, thus avoiding the need for lesion annotations, which can be
challenging and time-consuming to obtain. The performance of PCF
was evaluated using the PICTURE and PROSTATEx datasets. We per-
formed an intra-dataset five-fold cross-validation, an inter-dataset
generalization experiment, and a clinical evaluation of PCF on a
temporally separated patient cohort from the PICTURE dataset.
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Fig. 5. Graph (a) shows the ROC curve and graph (b) shows the PR curve for PCF-SEL on the temporally separated PICTURE dataset test cohort. Radiologist performance at
Likert cutoffs (> 3 and > 4) and PCF-SEL performance at probability cutoffs (> 0.17 and > 0.75) are shown, where probability cutoffs for PCF-SEL were selected using the

PICTURE dataset training cohort.

In the intra-dataset five-fold cross-validation, the performance
of PCF with feature selection enabled (PCF-SEL) was compared to
the performance of PCF with feature selection disabled (PCF-ALL),
to assess whether feature selection in PCF has a performance ben-
efit. Further comparison was made to ResNet3D and SVM classi-
fiers trained using individual MRI modalities, parameter maps, and
clinical features. On both the PICTURE and PROSTATEx datasets,
PCF-SEL outperformed all other classifiers. On the PICTURE dataset,
PCF-SEL achieved a mean ROC AUC of 0.79 and mean PR AUC of
0.86; ADC map, PSAd, Cb2000 DWI and TM map were selected
for inference over at least three out of five folds during the five-
fold cross-validation. On the PROSTATEx dataset, PCF-SEL achieved
a mean ROC AUC of 0.86 and mean PR AUC of 0.72; for this dataset,
Cb2000 DWI, ADC map, and ME map were selected for inference
over at least three out of five folds during the five-fold cross-
validation. Three observations are made based on the results of
the intra-dataset evaluation. First, we observe that the inclusion
of feature selection during the training stage of PCF yields perfor-
mance benefit, as shown by the superior performance of PCF-SEL
as compared to PCF-ALL. The feature selection step improves gen-
eralizability to unseen data by removing MRI modalities, param-
eter maps, and clinical features that are acting as noise; remov-
ing sources of noise is especially important when training classifi-
cation algorithms with small datasets which are common in PCa
CAD works primarily due to the need for a consistent and ac-
curate reference standard. Second, we observe that PCF-SEL suc-
cessfully uses clinical features alongside MRI to improve patient
classification performance. Our method uses a stacked ensemble
of SVMs, where MRI features and clinical features are processed
by separate dedicated SVMs, whose outputs are combined by a
third SVM, to produce to final patient classification. Using both
clinical features and MRI features for improved classification per-
formance is in line with works by Antonelli et al. (2019) and
Woznicki et al. (2020) who showed the utility of PSAd in lesion
classification tasks. Third, we observed a performance benefit from
using DCEI parameter maps. The semi-quantitative DCEI parame-
ters calculated in this work avoid the challenging estimation of
the arterial input function needed for computing pharmacokinetic
parameters (Haq et al., 2015). However, prior to clinical adoption

10

it would be important to consider whether the gain in perfor-
mance from using DCEI justifies the additional costs and risks as-
sociated to gadolinium injection; this is beyond the scope of this
paper.

In the intra-dataset evaluation we considered the ability of PCF
to generalize to unseen patient data from the same distribution as
the training patient data. However, it is also of interest to con-
sider the ability of CAD systems to generalize to external patient
cohorts, since this type of generalizability if observed would al-
low for wider deployment of a trained system. However, our inter-
dataset evaluation revealed a generalization gap. More precisely,
for the PICTURE dataset we observed a drop in the performance of
PCF-SEL-MR as compared to its performance in the intra-dataset
evaluation, from a ROC AUC of 0.77 to 0.72. As the feature se-
lection step uses validation data from the same distribution as
the training data, it does not guarantee selection of the optimal
modalities in the external dataset. However, a small increase in
ROC AUC was observed for PCF-ALL-MR from 0.72 to 0.73. On the
PROSTATEx dataset, both PCF-SEL-MR and PCF-ALL-MR had dimin-
ished performance, again, as the datasets do not share the same
optimal modalities and additionally due to the reduction in the
performance of constituent ResNet3D classifiers. Our findings sug-
gest that training CAD systems with data from the institution in
which deployment is intended is the optimal strategy and should
be sought where possible.

It is important to clinically evaluate prostate CAD systems. Cen-
tral to this is the need to compare CAD system performance to the
performance of radiologists who are the current clinical standard.
Moreover, clinical evaluations should consider how CAD systems
may perform prospectively which can be simulated using a tem-
porally separated patient cohort or an external patient cohort. Fur-
thermore, an effective clinical evaluation requires the probabilis-
tic output of the CAD system to be thresholded, allowing mea-
sures such as sensitivity, specificity, precision, and NPV to be re-
ported as opposed to ROC AUC or PR AUC, which allow model
comparison, but are less useful measures clinically. We compared
the performance of PCF-SEL to the performance of a radiologist
with 10 years of experience in reading prostate mpMRI, who gave
a Likert score to each patient’s prostate indicating the likelihood
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of CSPCa. On a temporally separated cohort of 40 patients from
the PICTURE dataset, the radiologist achieved a sensitivity of 100%
and a specificity of 20% at Likert threshold > 3, while PCF-SEL
achieved a sensitivity of 95% and a specificity of 35% at a proba-
bility threshold equal to 0.17. At Likert threshold > 4, the radiolo-
gist achieved a sensitivity of 75% and a specificity of 75%, whereas
PCF-SEL achieved a sensitivity of 75% and specificity of 55% at a
probability threshold equal to 0.75. The differences in performance
between the radiologist and PCF-SEL were not found to be statisti-
cally significant, providing initial evidence for PCF-SEL to be evalu-
ated in a larger clinical trial.

Our future work will introduce uncertainty estimation into
our framework. Several works have investigated epistemic (model-
based) uncertainty and aleatoric (data-based) uncertainty for clas-
sification and regression tasks (Gal and Ghahramani, 2016; Kendall
and Gal, 2017; Eaton-Rosen et al., 2018; Wang et al., 2019). These
are especially important to consider for medical systems to indi-
cate cases where human intervention may be required or to facil-
itate active learning for continuous optimisation of systems. From
a clinical viewpoint, we are planning clinical trials to examine the
performance of PCF as a second reader and as a triage tool which
can identify low-risk patients that do not require a clinical read;
both applications can help alleviate the ever-increasing workload
of radiologists.
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Appendix A. Performance comparison of proposed patient
classification framework, PCF, with an end-to-end
convolutional neural network

An end-to-end seven-stream CNN (E2E-Net) was trained using
volumetric T2WI, ADC map, computed b2000 DWI, and four DCEI
parameter maps, to output the patient-level probability of CSPCa.
Each stream of E2E-Net follows the architecture of the 3D ResNet
CNN shown in Fig. 3a, with the output node removed. In E2E-
Net, convolutional streams are joined using a 128-way fully con-
nected layer. Table A.1 compares the performance of E2E-Net to

Table A1

Mean ROC AUC =+ one standard deviation for E2E-Net, PCF-
ALL-MR, and PCF-SEL-MR, averaged over five-fold cross val-
idation, for the PICTURE and PROSTATEx datasets. Highest
value in each column shown in bold.

Classifier PICTURE dataset =~ PROSTATEx dataset
E2E-Net 0.69 +£0.07 0.80+£0.06
PCF-ALL-MR  0.72 +0.09 0.82+0.04
PCF-SEL-MR  0.77 £0.11 0.86 +0.04

the performance of PCF-ALL-MR and PCF-SEL-MR using an intra-
dataset five-fold cross-validation, where PCF-ALL-MR is trained us-
ing all seven of the MRI modalities and parameter maps, while

1
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PCF-SEL-MR applies the forward feature selection step described
in Section 2.3, during training.

For both the PICTURE and PROSTATEx datasets we observe a
large increase in ROC AUC from PCF-SEL-MR. The forward feature
selection step improves generalizability to unseen data by remov-
ing MRI modalities, parameter maps, and clinical features that are
acting as noise; removing sources of noise is especially important
when training classification algorithms with small datasets, which
are common in PCa CAD works, primarily due to the need for a
consistent and accurate reference standard.

Appendix B. Mean probability of clinically significant prostate
cancer, grouped by radiologist Likert score and maximum
cancer core length

During the PICTURE study an experienced radiologist (>10
years of experience in reading prostate mpMRI) assigned a Likert
score to a maximum of six lesions per patient, based on T2WI
alone, DWI alone, DCEI alone, and a combination of all modalities.
It would be reasonable to expect PCF to output the highest prob-
abilities of CSPCa for patients who have one or more large Likert
4 or 5 lesions. Table B.1 shows the averaged probabilities of CSPCa
associated to 210 patients from the PICTURE dataset who either
had no scorable lesion, a max Likert 2 or 3 lesion, a max Likert 4
or 5 lesion with maximum cancer core length (MCCL) < 6mm, or a
max Likert 4 or 5 lesion with MCCL > 6mm. The probabilities were
output by ResNet3D-T2WI, ResNet3D-ADC, and PCF-SEL during the
intra-dataset five-fold cross validation described in Section 4.1.

We observe the highest average probability of CSPCa for pa-
tients with max Likert 4 or 5 lesion with MCCL > 6mm, followed
by patients with max Likert 4 or 5 lesion with MCCL < 6mm, fol-
lowed by patients with max Likert 2 or 3 lesion, and the lowest
average probability of CSPCa for patients with no scorable lesion.

Table B.1
Mean probability of CSPCa, grouped by Likert score and MCCL, for the PICTURE
dataset.

Patient grouping ResNet3D-T2WI  ResNet3D-ADC  PCF-SEL
No scorable lesion 0.45 0.39 0.39
Max Likert 2 or 3 0.52 0.43 0.47
Max Likert 4/5, MCCL < 6mm  0.53 0.49 0.51
Max Likert 4/5, MCCL > 6mm  0.57 0.61 0.76
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