1,033 research outputs found

    Mott Transition in Quasi-One-Dimensional Systems

    Full text link
    We report the application of the density-matrix renormalization group method to a spatially anisotropic two-dimensional Hubbard model at half-filling. We find a deconfinement transition induced by the transverse hopping parameter tyt_y from an insulator to a metal. Therefore, if tyt_y is fixed in the metallic phase, increasing the interaction UU leads to a metal-to-insulator transition at a finite critical UU. This is in contrast to the weak-coupling Hartree-Fock theory which predicts a nesting induced antiferromagnetic insulator for any U>0U>0.Comment: 4 pages, 3 figure

    Approximately Strategyproof Tournament Rules: On Large Manipulating Sets and Cover-Consistence

    Get PDF
    We consider the manipulability of tournament rules, in which n teams play a round robin tournament and a winner is (possibly randomly) selected based on the outcome of all binom{n}{2} matches. Prior work defines a tournament rule to be k-SNM-? if no set of ? k teams can fix the ? binom{k}{2} matches among them to increase their probability of winning by >? and asks: for each k, what is the minimum ?(k) such that a Condorcet-consistent (i.e. always selects a Condorcet winner when one exists) k-SNM-?(k) tournament rule exists? A simple example witnesses that ?(k) ? (k-1)/(2k-1) for all k, and [Jon Schneider et al., 2017] conjectures that this is tight (and prove it is tight for k=2). Our first result refutes this conjecture: there exists a sufficiently large k such that no Condorcet-consistent tournament rule is k-SNM-1/2. Our second result leverages similar machinery to design a new tournament rule which is k-SNM-2/3 for all k (and this is the first tournament rule which is k-SNM-(<1) for all k). Our final result extends prior work, which proves that single-elimination bracket with random seeding is 2-SNM-1/3 [Jon Schneider et al., 2017], in a different direction by seeking a stronger notion of fairness than Condorcet-consistence. We design a new tournament rule, which we call Randomized-King-of-the-Hill, which is 2-SNM-1/3 and cover-consistent (the winner is an uncovered team with probability 1)

    Quantum phase transitions, frustration, and the Fermi surface in the Kondo lattice model

    Full text link
    The quantum phase transition from a spin-Peierls phase with a small Fermi surface to a paramagnetic Luttinger-liquid phase with a large Fermi surface is studied in the framework of a one-dimensional Kondo-Heisenberg model that consists of an electron gas away from half filling, coupled to a spin-1/2 chain by Kondo interactions. The Kondo spins are further coupled to each other with isotropic nearest-neighbor and next-nearest-neighbor antiferromagnetic Heisenberg interactions which are tuned to the Majumdar-Ghosh point. Focusing on three-eighths filling and using the density-matrix renormalization-group (DMRG) method, we show that the zero-temperature transition between the phases with small and large Fermi momenta appears continuous, and involves a new intermediate phase where the Fermi surface is not well defined. The intermediate phase is spin gapped and has Kondo-spin correlations that show incommensurate modulations. Our results appear incompatible with the local picture for the quantum phase transition in heavy fermion compounds, which predicts an abrupt change in the size of the Fermi momentum.Comment: 9 pages, 8 figure

    25-Hydroxy vitamin-D, obesity, and associated variables as predictors of breast cancer risk and tamoxifen benefit in NSABP-P1.

    Get PDF
    Observational studies suggest that host factors are associated with breast cancer risk. The influence of obesity, vitamin-D status, insulin resistance, inflammation, and elevated adipocytokines in women at high risk of breast cancer is unknown. The NSABP-P1 trial population was used for a nested case-control study. Cases were drawn from those who developed invasive breast cancer and controls selected from unaffected participants (≤4 per case) matched for age, race, 5 year Gail score, and geographic location of clinical center as a surrogate for latitude. Fasting serum banked at trial enrolment was assayed for 25-hydroxy vitamin-D (25OHD), insulin, leptin (adipocytokine), and C-reactive protein (CRP, marker of inflammation). Logistic regression was used to test for associations between study variables and the risk of invasive breast cancer. Two hundred and thirty-one cases were matched with 856 controls. Mean age was 54, and 49% were premenopausal. There were negative correlations for 25OHD with body mass index (BMI), insulin, CRP, and leptin. BMI ≥ 25 kg/m(2) was associated with higher breast cancer risk (odds ratio [OR] 1.45, p = 0.02) and tamoxifen treatment was associated with lower risk (OR = 0.44, p &lt; 0.001). Suboptimal 25OHD (&lt;72 nmol/l) did not influence breast cancer risk (OR = 1.06, p = 0.76). When evaluated as continuous variables, 25OHD, insulin, CRP, and leptin levels were not associated with breast cancer risk (all p &gt; 0.34). In this high risk population, higher BMI was associated with a greater breast cancer risk. Serum levels of 25OHD, insulin, CRP, and leptin were not independent predictors of either breast cancer risk or tamoxifen benefit

    Construction of Partial MDS and Sector-Disk Codes With Two Global Parity Symbols

    Get PDF
    Partial MDS (PMDS) codes are erasure codes combining local (row) correction with global additional correction of entries, while sector-disk (SD) codes are erasure codes that address the mixed failure mode of current redundant arrays of independent disk (RAID) systems. It has been an open problem to construct general codes that have the PMDS and the SD properties, and previous work has relied on Monte-Carlo searches. In this paper, we present a general construction that addresses the case of any number of failed disks and in addition, two erased sectors. The construction requires a modest field size. This result generalizes previous constructions extending RAID 5 and RAID 6

    Membrane Protein Biogenesis in Ffh- or FtsY-Depleted Escherichia coli

    Get PDF
    BACKGROUND: The Escherichia coli version of the mammalian signal recognition particle (SRP) system is required for biogenesis of membrane proteins and contains two essential proteins: the SRP subunit Ffh and the SRP-receptor FtsY. Scattered in vivo studies have raised the possibility that expression of membrane proteins is inhibited in cells depleted of FtsY, whereas Ffh-depletion only affects their assembly. These differential results are surprising in light of the proposed model that FtsY and Ffh play a role in the same pathway of ribosome targeting to the membrane. Therefore, we decided to evaluate these unexpected results systematically. METHODOLOGY/PRINCIPAL FINDINGS: We characterized the following aspects of membrane protein biogenesis under conditions of either FtsY- or Ffh-depletion: (i) Protein expression, stability and localization; (ii) mRNA levels; (iii) folding and activity. With FtsY, we show that it is specifically required for expression of membrane proteins. Since no changes in mRNA levels or membrane protein stability were detected in cells depleted of FtsY, we propose that its depletion may lead to specific inhibition of translation of membrane proteins. Surprisingly, although FtsY and Ffh function in the same pathway, depletion of Ffh did not affect membrane protein expression or localization. CONCLUSIONS: Our results suggest that indeed, while FtsY-depletion affects earlier steps in the pathway (possibly translation), Ffh-depletion disrupts membrane protein biogenesis later during the targeting pathway by preventing their functional assembly in the membrane
    corecore