189 research outputs found

    Conservation Agriculture and Household Wellbeing: A Non-Causal Comparison among Smallholder Farmers in Mozambique

    Get PDF
    This research examines the relationship between household wellbeing and the use of conservation agriculture (CA) by smallholder farmers in Mozambique. Wellbeing indicators are regressed on household demographic attributes, farm management practices, and a variable indicating farmer adoption of CA. Findings suggest that households using CA have higher wellbeing index scores related to farm tool and implement ownership and housing material quality, but lower index scores related to livestock ownership. The findings present an encouraging, baseline picture of the association between the use of CA technologies by farmers in Mozambique and household wellbeing

    A Short-Term Assessment of Carbon Dioxide Fluxes under Contrasting Agricultural and Soil Management Practices in Zimbabwe

    Get PDF
    Two of the biggest problems facing humankind are feeding an exponentially growing human population and preventing the accumulation of atmospheric greenhouse gases and its climate change consequences. Refined agricultural practices could address both of these problems. The research addressed here is an exploration of the efficacy of alternative agricultural practices in sequestering carbon (C). The study was conducted in Zimbabwe with the intent to (a) demonstrate the utility of micrometeorological methods for measuring carbon dioxide (CO2) exchange between the surface and the atmosphere in the short-term, and (b) to quantify differences in such exchange rates for a variety of agricultural practices. Four Bowen ratio energy balance (BREB) systems were established on the following agricultural management practices: (1) no-till (NT) followed by planting of winter wheat (Triticum aestivum), (2) NT followed by planting of blue lupin (Lupinus angustifolios L.), (3) maize crop residue (Zea mays L.) left on the surface, and (4) maize crop residue incorporated with tillage. Over a period of 139 days (from 15 June to 31 October 2013) the winter wheat cover crop produced a net accumulation of 257 g CO2-C m-2, while the tilled plot with no cover crop produced a net emission of 197 g CO2-C m-2 and the untilled plot with no cover emitted 235 g CO2-C m-2. The blue lupin cover crop emitted 58 g CO2-C m-2, indicating that winter cover crops can sequester carbon and reduce emissions over land left fallow through the non-growing season. The micrometeorological methods described in this work can detect significant differences between treatments over a period of a few months, an outcome important to determine which smallholder soil management practices can contribute towards mitigating climate change

    Abiotic Stresses Management in Citrus

    Get PDF
    Citrus production is affected globally by several environmental stresses. Some citrus-producing regions suffer from severe ecological abiotic stresses, including cold, soil salinity and sodicity, extreme temperature, and drought. These abiotic stresses can alleviate the growth, fruit yield, and quality of citrus. Strategies that attempt to sustain and increase tolerance of citrus against the negative effect of abiotic stresses are the use of antiperspirant compounds, phytohormones, synthetic and natural growth regulators, soil and plant moisture retaining tools and structures, nutrition management, application of organic fertilizers, rootstocks breeding in citriculture, and others. These strategies increase the yield and growth of the plant along with the relative improvement of the fruit quality during the growth and fruiting period, increasing the absorption of water and nutrients, the extensive accumulation of osmolytes and the increase of antioxidant enzymes, changes in the amount of signaling substances, and the expression of genes under stress, increase tolerance to abiotic stresses in citrus fruits. In this review, we tried to provide a summary of the abiotic stress management in citrus by literature

    Nutrient Source and Tillage Effects on Maize: II. Yield, Soil Carbon, and Carbon Dioxide Emissions

    Get PDF
    There is a need to understand the potential benefits of using the biotechnology waste by‐product from manufacturing as a fertilizer replacement in agriculture, by quantifying the economic value for the farmer and measuring the environmental impact. Measuring CO2 emissions can be used to assess environmental impact, including three widely used micrometeorological methodologies: (i) the Bowen Ratio Energy Balance (BREB), (ii) aerodynamic flux‐gradient theory, and (iii) eddy covariance (EC). As a first step in quantifying benefits of applying biotechnology waste in agriculture, a detailed examination of these three methods was conducted to understand their effectiveness in quantifying CO2 emissions for this specific circumstance. The study measured micrometeorological properties over a field planted to maize (Zea mays L. var. indentata ), one plot treated with biotechnology waste applied as a nutrient amendment, and one plot treated with a typical farmer fertilizer practice. Carbon dioxide flux measurements took place over 1 yr, using both BREB and EC systems. The aerodynamic method was used to gap‐fill BREB system measurements, and those flux estimates were compared with estimates produced separately by the aerodynamic and EC methods. All methods found greater emissions over the biotechnology waste application. The aerodynamic method CO2 flux estimates were considerably greater than both the EC and a combined BREB‐aerodynamic approach. During the day, the EC and BREB methods agree. At night, the aerodynamic approach detects and accounts for buildup of CO2 at the surface during stable periods. The BREB systems combined with aerodynamic approaches provide alternate methods to EC in examining micrometeorological properties near the surface

    Nutrient Source and Tillage Effects on Maize: I. Micrometeorological Methods for Measuring Carbon Dioxide Emissions

    Get PDF
    There is a need to understand the potential benefits of using the biotechnology waste by‐product from manufacturing as a fertilizer replacement in agriculture, by quantifying the economic value for the farmer and measuring the environmental impact. Measuring CO2 emissions can be used to assess environmental impact, including three widely used micrometeorological methodologies: (i) the Bowen Ratio Energy Balance (BREB), (ii) aerodynamic flux‐gradient theory, and (iii) eddy covariance (EC). As a first step in quantifying benefits of applying biotechnology waste in agriculture, a detailed examination of these three methods was conducted to understand their effectiveness in quantifying CO2 emissions for this specific circumstance. The study measured micrometeorological properties over a field planted to maize (Zea mays L. var. indentata ), one plot treated with biotechnology waste applied as a nutrient amendment, and one plot treated with a typical farmer fertilizer practice. Carbon dioxide flux measurements took place over 1 yr, using both BREB and EC systems. The aerodynamic method was used to gap‐fill BREB system measurements, and those flux estimates were compared with estimates produced separately by the aerodynamic and EC methods. All methods found greater emissions over the biotechnology waste application. The aerodynamic method CO2 flux estimates were considerably greater than both the EC and a combined BREB‐aerodynamic approach. During the day, the EC and BREB methods agree. At night, the aerodynamic approach detects and accounts for buildup of CO2 at the surface during stable periods. The BREB systems combined with aerodynamic approaches provide alternate methods to EC in examining micrometeorological properties near the surface

    Conservation agriculture as a climate change mitigation strategy in Zimbabwe

    Get PDF
    There is a need to quantify agriculture’s potential to sequester carbon (C) to inform global approaches aimed at mitigating climate change effects. Many factors including climate, crop, soil management practices, and soil type can influence the contribution of agriculture to the global carbon cycle. The objective of this study was to investigate the C sequestration potential of conservation agriculture (CA) (defined by minimal soil disturbance, maintaining permanent soil cover, and crop rotations). This study used micrometeorological methods to measure carbon dioxide (CO2) flux from several alternative CA practices in Harare, central Zimbabwe. Micrometeorological methods can detect differences in total CO2 emissions of agricultural management practices; our results show that CA practices produce less CO2 emissions. Over three years of measurement, the mean and standard error (SE) of CO2 emissions for the plot with the most consistent CA practices was 0.564 ± 0.0122 g CO2 m-2 h-1, significantly less than 0.928 ± 0.00859 g CO2 m-2 h-1 for the conventional tillage practice. Overall CA practices of no-till with the use of cover crops produced fewer CO2 emissions than conventional tillage or fallow

    Neutrophils in cancer: neutral no more

    Get PDF
    Neutrophils are indispensable antagonists of microbial infection and facilitators of wound healing. In the cancer setting, a newfound appreciation for neutrophils has come into view. The traditionally held belief that neutrophils are inert bystanders is being challenged by the recent literature. Emerging evidence indicates that tumours manipulate neutrophils, sometimes early in their differentiation process, to create diverse phenotypic and functional polarization states able to alter tumour behaviour. In this Review, we discuss the involvement of neutrophils in cancer initiation and progression, and their potential as clinical biomarkers and therapeutic targets

    High JC virus load in tongue carcinomas may be a risk factor for tongue tumorigenesis

    Get PDF
    The John Cunningham virus (JCV) asymptomatically infects a large proportion (~90%) of the population worldwide but may be activated in immunodeficient patients, resulting in progressive multifocal leukoencephalopathy. Recent reports demonstrated its oncogenic role in malignancies. In this paper, the presence of JCV-targeting T antigen was investigated in tongue carcinoma (TC, n = 39), dysplastic tongue epithelium (DTE, n = 15) and glossitis (n = 15) using real-time polymerase chain reaction (PCR) and in situ PCR and immunohistochemistry, and JCV copies were analyzed with the clinicopathological parameters of TCs. The results demonstrated that glossitis and DTEs had significantly lower copies of JCV (410.5 ± 44.3 and 658.3 ± 53.3 copies/μg DNA respectively) than TCs (981.5 ± 14.0, p  < 0.05). When they were divided into three groups with 0–200 copies/μg DNA (low), 201–1,000 (moderate) and more than 1001 (high), TCs showed 3 (7.6%) in the low group, 21 (53.8%) in the moderate group and 15 (38.4%) in the high group and glossitis showed 11 (73.3%) in the low group, 0 (0%) in the moderate group and 4 (26.6%) in the high group. The DTEs occupied an intermediate position between them (p < 0.001). In situ PCR demonstrated that the nuclei of TC and DTE cells are sporadically T-antigen positive but not in nasal turbinate epithelial cells. Immunohistochemistry for T-antigen protein revealed four positive cases only in TCs. The existence of JCV T-antigen DNA was not associated with the clinicopathological variables of TCs. In conclusion, the presence of JCV may be a risk factor of tongue carcinogenesis
    corecore