1,402 research outputs found
Narrow structure in the coherent population trapping resonances in rubidium and Rayleigh scattering
The measurement of the coherent-population-trapping (CPT) resonances in
uncoated Rb vacuum cells has shown that the shape of the resonances is
different in different cells. In some cells the resonance has a complex shape -
a narrow Lorentzian structure, which is not power broadened, superimposed on
the power broadened CPT resonance. The results of the performed investigations
on the fluorescence angular distribution are in agreement with the assumption
that the narrow structure is a result of atom interaction with Rayleigh
scattering light. The results are interesting for indication of the vacuum
cleanness of the cells and building of magnetooptical sensors
Metrological characterization of the pulsed Rb clock with optical detection
We report on the implementation and the metrological characterization of a
vapor-cell Rb frequency standard working in pulsed regime. The three main parts
that compose the clock, physics package, optics and electronics, are described
in detail in the paper. The prototype is designed and optimized to detect the
clock transition in the optical domain. Specifically, the reference atomic
transition, excited with a Ramsey scheme, is detected by observing the
interference pattern on a laser absorption signal.
\ The metrological analysis includes the observation and characterization of
the clock signal and the measurement of frequency stability and drift. In terms
of Allan deviation, the measured frequency stability results as low as
, being the averaging time, and
reaches the value of few units of for s, an
unprecedent achievement for a vapor cell clock. We discuss in the paper the
physical effects leading to this result with particular care to laser and
microwave noises transferred to the clock signal. The frequency drift, probably
related to the temperature, stays below per day, and no evidence of
flicker floor is observed.
\ We also mention some possible improvements that in principle would lead to
a clock stability below the level at 1 s and to a drift of few units
of per day
Proton-air inelastic cross section at S(1/2) = 30 TeV
The distribution of the maxima of high energy cosmic ray induced extensive air showers in the atmosphere was measured as a function of atmospheric depth. From the exponential tail of this distribution, it was determined that the proton-air inelastic cross section at 30 TeV center-of-mass energy to be 540 + or - 40mb
Energy calibration of the fly's eye detector
The methods used to calibrate the Fly's eye detector to evaluate the energy of EAS are discussed. The energy of extensive air showers (EAS) as seen by the Fly's Eye detector are obtained from track length integrals of observed shower development curves. The energy of the parent cosmic ray primary is estimated by applying corrections to account for undetected energy in the muon, neutrino and hadronic channels. Absolute values for E depend upon the measurement of shower sizes N sub e(x). The following items are necessary to convert apparent optical brightness into intrinsical optical brightness: (1) an assessment of those factors responsible for light production by the relativistic electrons in an EAS and the transmission of light thru the atmosphere, (2) calibration of the optical detection system, and (3) a knowledge of the trajectory of the shower
Diffusion Resonances in Action Space for an Atom Optics Kicked Rotor with Decoherence
We numerically investigate momentum diffusion rates for the pulse kicked
rotor across the quantum to classical transition as the dynamics are made more
macroscopic by increasing the total system action. For initial and late time
rates we observe an enhanced diffusion peak which shifts and scales with
changing kick strength, and we also observe distinctive peaks around quantum
resonances. Our investigations take place in the context of a system of
ultracold atoms which is coupled to its environment via spontaneous emission
decoherence, and the effects should be realisable in ongoing experiments.Comment: 4 Pages, RevTeX 4, 5 Figures. Updated Figures, Minor Changes to text,
Corrected Reference
Quantum state transfer with untuneable couplings
We present a general scheme for implementing bi-directional quantum state
transfer in a quantum swapping channel. Unlike many other schemes for quantum
computation and communication, our method does not require qubit couplings to
be switched on and off. The only control variable is the bias acting on
individual qubits. We show how to derive the parameters of the system (fixed
and variable) such that perfect state transfer can be achieved. Since these
parameters vary linearly with the pulse width, our scheme allows flexibility in
the time scales under which qubits evolve. Unlike quantum spin networks, our
scheme allows the transmission of several quantum states at a time, requiring
only a two qubit separation between quantum states. By pulsing the biases of
several qubits at the same time, we show that only eight bias control lines are
required to achieve state transfer along a channel of arbitrary length.
Furthermore, when the information to be transferred is purely classical in
nature, only three bias control lines are required, greatly simplifying the
circuit complexity
- …