15,873 research outputs found

    The Formal Underpinnings of the Response Functions used in X-Ray Spectral Analysis

    Get PDF
    This work provides an in-depth mathematical description of the response functions that are used for spatial and spectral analysis of X-ray data. The use of such functions is well-known to anyone familiar with the analysis of X-ray data where they may be identified with the quantities contained in the Ancillary Response File (ARF), the Redistribution Matrix File (RMF), and the Exposure Map. Starting from first-principles, explicit mathematical expressions for these functions, for both imaging and dispersive modes, are arrived at in terms of the underlying instrumental characteristics of the telescope including the effects of pointing motion. The response functions are presented in the context of integral equations relating the expected detector count rate to the source spectrum incident upon the telescope. Their application to the analysis of several source distributions is considered. These include multiple, possibly overlapping, and spectrally distinct point sources, as well as extended sources. Assumptions and limitations behind the usage of these functions, as well as their practical computation are addressed.Comment: 22 pages, 3 figures (LaTeX

    Effects of specimen resonances on acoustic-ultrasonic testing

    Get PDF
    The effects of specimen resonances on acoustic ultrasonic (AU) nondestructive testing were investigated. Selected resonant frequencies and the corresponding normal mode nodal patterns of the aluminum block are measured up to 75.64 kHz. Prominent peaks in the pencil lead fracture and sphere impact spectra from the two transducer locations corresponded exactly to resonant frequencies of the block. It is established that the resonant frequencies of the block dominated the spectral content of the output signal. The spectral content of the output signals is further influenced by the transducer location relative to the resonant frequency nodal lines. Implications of the results are discussed in relation to AU parameters and measurements

    Network constraints on learnability of probabilistic motor sequences

    Full text link
    Human learners are adept at grasping the complex relationships underlying incoming sequential input. In the present work, we formalize complex relationships as graph structures derived from temporal associations in motor sequences. Next, we explore the extent to which learners are sensitive to key variations in the topological properties inherent to those graph structures. Participants performed a probabilistic motor sequence task in which the order of button presses was determined by the traversal of graphs with modular, lattice-like, or random organization. Graph nodes each represented a unique button press and edges represented a transition between button presses. Results indicate that learning, indexed here by participants' response times, was strongly mediated by the graph's meso-scale organization, with modular graphs being associated with shorter response times than random and lattice graphs. Moreover, variations in a node's number of connections (degree) and a node's role in mediating long-distance communication (betweenness centrality) impacted graph learning, even after accounting for level of practice on that node. These results demonstrate that the graph architecture underlying temporal sequences of stimuli fundamentally constrains learning, and moreover that tools from network science provide a valuable framework for assessing how learners encode complex, temporally structured information.Comment: 29 pages, 4 figure

    Glycosylation of hyperthermostable designer cellulosome components yields enhanced stability and cellulose hydrolysis

    Get PDF
    Biomass deconstruction remains integral for enabling second‐generation biofuel production at scale. However, several steps necessary to achieve significant solubilization of biomass, notably harsh pretreatment conditions, impose economic barriers to commercialization. By employing hyperthermostable cellulase machinery, biomass deconstruction can be made more efficient, leading to milder pretreatment conditions and ultimately lower production costs. The hyperthermophilic bacterium Caldicellulosiruptor bescii produces extremely active hyperthermostable cellulases, including the hyperactive multifunctional cellulase CbCel9A/Cel48A. Recombinant CbCel9A/Cel48A components have been previously produced in Escherichia coli and integrated into synthetic hyperthermophilic designer cellulosome complexes. Since then, glycosylation has been shown to be vital for the high activity and stability of CbCel9A/Cel48A. Here, we studied the impact of glycosylation on a hyperthermostable designer cellulosome system in which two of the cellulosomal components, the scaffoldin and the GH9 domain of CbCel9A/Cel48A, were glycosylated as a consequence of employing Ca. bescii as an expression host. Inclusion of the glycosylated components yielded an active cellulosome system that exhibited long‐term stability at 75 °C. The resulting glycosylated designer cellulosomes showed significantly greater synergistic activity compared to the enzymatic components alone, as well as higher thermostability than the analogous nonglycosylated designer cellulosomes. These results indicate that glycosylation can be used as an essential engineering tool to improve the properties of designer cellulosomes. Additionally, Ca. bescii was shown to be an attractive candidate for production of glycosylated designer cellulosome components, which may further promote the viability of this bacterium both as a cellulase expression host and as a potential consolidated bioprocessing platform organism

    Space station architectural elements model study

    Get PDF
    The worksphere, a user controlled computer workstation enclosure, was expanded in scope to an engineering workstation suitable for use on the Space Station as a crewmember desk in orbit. The concept was also explored as a module control station capable of enclosing enough equipment to control the station from each module. The concept has commercial potential for the Space Station and surface workstation applications. The central triangular beam interior configuration was expanded and refined to seven different beam configurations. These included triangular on center, triangular off center, square, hexagonal small, hexagonal medium, hexagonal large and the H beam. Each was explored with some considerations as to the utilities and a suggested evaluation factor methodology was presented. Scale models of each concept were made. The models were helpful in researching the seven beam configurations and determining the negative residual (unused) volume of each configuration. A flexible hardware evaluation factor concept is proposed which could be helpful in evaluating interior space volumes from a human factors point of view. A magnetic version with all the graphics is available from the author or the technical monitor
    corecore