489 research outputs found
On the use of new methods and multimedia
In the STEPS project the working group WG2 studied “New teaching and learning methods” and “The use of new multimedia”. Both were surveyed in Bachelor and Master studies of all STEPS members An inventory among universities
and alumni on tools, software, programming languages and the importance of transferable skills was made. A list of categorized methods, tools and transferable skills resulted. The WG2 evaluated MultiMedia (MM) with the MPTL group. In 2009 the project STEPS TWO started. The WG2 focuses on project-based and student centred learning, also trying out some best practice materials with students and
teachers. We address some problems found in categorizing and evaluating methods and materials We describe some didactical aspects and conditions for an effective
integration of MM
Spin-wave softening and Hund's coupling in ferromagnetic manganites
Using one-orbital model of hole-doped manganites, we show with the help of
Holstein-Primakov transformation that finite Hund's coupling is responsible for
the spin-wave softening in the ferromagnetic -phase manganites. We obtain an
analytical result for the spin-wave spectrum for \JH\gg t. In the limit of
infinte Hund's coupling, the spectrum is the conventional nearest-neighbor
Heisenberg ferromagnetic spin-wave. The o(t/\JH)-order correction is negative
and thus accounts for the softening near the zone boundary.Comment: 5 pages, 3 figure
Orbital liquid in ferromagnetic manganites: The orbital Hubbard model for electrons
We have analyzed the symmetry properties and the ground state of an orbital
Hubbard model with two orbital flavors, describing a partly filled
spin-polarized band on a cubic lattice, as in ferromagnetic manganites.
We demonstrate that the off-diagonal hopping responsible for transitions
between and orbitals, and the absence of SU(2) invariance
in orbital space, have important implications. One finds that superexchange
contributes in all orbital ordered states, the Nagaoka theorem does not apply,
and the kinetic energy is much enhanced as compared with the spin case.
Therefore, orbital ordered states are harder to stabilize in the Hartree-Fock
approximation (HFA), and the onset of a uniform ferro-orbital polarization and
antiferro-orbital instability are similar to each other, unlike in spin case.
Next we formulate a cubic (gauge) invariant slave boson approach using the
orbitals with complex coefficients. In the mean-field approximation it leads to
the renormalization of the kinetic energy, and provides a reliable estimate for
the ground state energy of the disordered state. Using this approach one finds
that the HFA fails qualitatively in the regime of large Coulomb repulsion
-- the orbital order is unstable, and instead a strongly
correlated orbital liquid with disordered orbitals is realized at any electron
filling.Comment: 25 pages, 9 figure
Single-electron tunneling in InP nanowires
We report on the fabrication and electrical characterization of field-effect
devices based on wire-shaped InP crystals grown from Au catalyst particles by a
vapor-liquid-solid process. Our InP wires are n-type doped with diameters in
the 40-55 nm range and lengths of several microns. After being deposited on an
oxidized Si substrate, wires are contacted individually via e-beam fabricated
Ti/Al electrodes. We obtain contact resistances as low as ~10 kOhm, with minor
temperature dependence. The distance between the electrodes varies between 0.2
and 2 micron. The electron density in the wires is changed with a back gate.
Low-temperature transport measurements show Coulomb-blockade behavior with
single-electron charging energies of ~1 meV. We also demonstrate energy
quantization resulting from the confinement in the wire.Comment: 4 pages, 3 figure
Influences of multilocus heterozygosity on size during early life
Genetic diversity has been hypothesized to promote fitness of individuals and populations, but few studies have examined how genetic diversity varies with ontogeny. We examined patterns in population and individual genetic diversity and the effect of genetic diversity on individual fitness among life stages (adults and juveniles) and populations of captive yellow perch (Perca flavescens) stocked into two ponds and allowed to spawn naturally. Significant genetic structure developed between adults and offspring in a single generation, even as heterozygosity and allelic richness remained relatively constant. Heterozygosity had no effect on adult growth or survival, but was significantly and consistently positively related to offspring length throughout the first year of life in one pond but not the other. The largest individuals in the pond exhibiting this positive relationship were more outbred than averaged size individuals and also more closely related to one another than they were to average‐sized individuals, suggesting potential heritability of body size or spawn timing effects. These results indicate that the influence of heterozygosity may be mediated through an interaction, likely viability selection, between ontogeny and environment that is most important during early life. In addition, populations may experience significant genetic change within a single generation in captive environments, even when allowed to reproduce naturally. Accounting for the dynamic influences of genetic diversity on early life fitness could lead to improved understanding of recruitment and population dynamics in both wild and captive populations.Heterozygosity is assumed to increase the fitness of individuals throughout life, but ontogenetic variance in heterozygosity–fitness correlations (HFCs) is poorly understood. We observed significant differences in HFCs between yellow perch populations and among life stages, suggesting the influence of heterozygosity may be mediated through an interaction, likely viability selection, between ontogeny and environment that is most important during early life. Accounting for the dynamic influences of genetic diversity on early life fitness could lead to improved understanding of recruitment and population dynamics in both wild and captive populations.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/136477/1/ece32781.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/136477/2/ece32781_am.pd
Damped orbital excitations in the titanates
A possible mechanism for the removal of the orbital degeneracy in RTiO3
(where R=La, Y, ...) is considered. The calculation is based on the
Kugel-Khomskii Hamiltonian for electrons residing in the t2g orbitals of the Ti
ions, and uses a self-consistent pe rturbation expansion in the interaction
between the orbital and the spin degrees of freedom. The latter are assumed to
be ordered in a Neel state, brought about by delicate interactions that are not
included in the Kugel-Khomskii Hamiltonian. Within our model calculations, each
of the t2g bands is found to acquire a finite, temperature-dependent
dispersion, that lifts the orbital degeneracy. The orbital excitations are
found to be heavily damped over a rather wide band. Consequently, they do not
participate as a separate branch of excitations in the low-temperature
thermodynamics.eComment: 6 pages, 3 figure
Theory of Raman Scattering from Orbital Excitations in Manganese Oxides
We present a theory of the Raman scattering from the orbital wave excitations
in manganese oxides. Two excitation processes of the Raman scattering are
proposed. The Raman scattering cross section is formulated by using the
pseudospin operator for orbital degree of freedom in a Mn ion. The Raman
spectra from the orbital wave excitations are calculated and their implications
in the recent experimental results reported in LaMnO are discussed.Comment: 10 pages, 7 figure
Pairing Correlations in a Generalized Hubbard Model for the Cuprates
Using numerical diagonalization of a 4x4 cluster, we calculate on-site s,
extended s and d pairing correlation functions (PCF) in an effective
generalized Hubbard model for the cuprates, with nearest-neighbor correlated
hopping and next nearest-neighbor hopping t'. The vertex contributions (VC) to
the PCF are significantly enhanced, relative to the t-t'-U model. The behavior
of the PCF and their VC, and signatures of anomalous flux quantization,
indicate superconductivity in the d-wave channel for moderate doping and in the
s-wave channel for high doping and small U.Comment: 5 pages, 5 figure
Microscopic modelling of doped manganites
Colossal magneto-resistance manganites are characterised by a complex
interplay of charge, spin, orbital and lattice degrees of freedom. Formulating
microscopic models for these compounds aims at meeting to conflicting
objectives: sufficient simplification without excessive restrictions on the
phase space. We give a detailed introduction to the electronic structure of
manganites and derive a microscopic model for their low energy physics.
Focussing on short range electron-lattice and spin-orbital correlations we
supplement the modelling with numerical simulations.Comment: 20 pages, 10 figs, accepted for publ. in New J. Phys., Focus issue on
Orbital Physic
Fingerprints of spin-orbital physics in cubic Mott insulators: Magnetic exchange interactions and optical spectral weights
The temperature dependence and anisotropy of optical spectral weights
associated with different multiplet transitions is determined by the spin and
orbital correlations. To provide a systematic basis to exploit this close
relationship between magnetism and optical spectra, we present and analyze the
spin-orbital superexchange models for a series of representative
orbital-degenerate transition metal oxides with different multiplet structure.
For each case we derive the magnetic exchange constants, which determine the
spin wave dispersions, as well as the partial optical sum rules. The magnetic
and optical properties of early transition metal oxides with degenerate
orbitals (titanates and vanadates with perovskite structure) are shown
to depend only on two parameters, viz. the superexchange energy and the
ratio of Hund's exchange to the intraorbital Coulomb interaction, and on
the actual orbital state. In systems important corrections follow from
charge transfer excitations, and we show that KCuF can be classified as a
charge transfer insulator, while LaMnO is a Mott insulator with moderate
charge transfer contributions. In some cases orbital fluctuations are quenched
and decoupling of spin and orbital degrees of freedom with static orbital order
gives satisfactory results for the optical weights. On the example of cubic
vanadates we describe a case where the full quantum spin-orbital physics must
be considered. Thus information on optical excitations, their energies,
temperature dependence and anisotropy, combined with the results of magnetic
neutron scattering experiments, provides an important consistency test of the
spin-orbital models, and indicates whether orbital and/or spin fluctuations are
important in a given compound.Comment: 34 pages, 16 figure
- …